There is More to Negation than Modality

Article

Abstract

There is a relatively recent trend in treating negation as a modal operator. One such reason is that doing so provides a uniform semantics for the negations of a wide variety of logics and arguably speaks to a longstanding challenge of Quine put to non-classical logics. One might be tempted to draw the conclusion that negation is a modal operator, a claim Francesco Berto (Mind, 124(495), 761–793, 2015) defends at length in a recent paper. According to one such modal account, the negation of a sentence is true at a world x just in case all the worlds at which the sentence is true are incompatible with x. Incompatibility is taken to be the key notion in the account, and what minimal properties a negation has comes down to which minimal conditions incompatibility satisfies. Our aims in this paper are twofold. First, we wish to point out problems for the modal account that make us question its tenability on a fundamental level. Second, in its place we propose an alternative, non-modal, account of negation as a contradictory-forming operator that we argue is superior to, and more natural than, the modal account.

Keywords

Negation Compatibility Modality Contradictory 

Notes

Acknowledgments

We would like to thank Brendan Balcerak Jackson, Francesco Berto, Thomas Müller, Heinrich Wansing, and an anonymous referee for helpful discussion. We would also like to thank the participants of the Munich Centre for Mathematical Philosophy (MCMP) Colloquium.

References

  1. 1.
    Batens, D. (1980). Paraconsistent extensional propositional logics. Logique et Analyse, 90–91, 195–234.Google Scholar
  2. 2.
    Batens, D., & De Clercq, K. (2004). A rich paraconsistent extension of full positive logic. Logique et Analyse, 185-188, 227–257.Google Scholar
  3. 3.
    Beall, J. (2009). Spandrels of truth. Oxford University Press.Google Scholar
  4. 4.
    Belnap, N. (1976). How a computer should think. In: G. Ryle (ed.) Contemporary aspects of philosophy, pp. 30-55. Oriel Press.Google Scholar
  5. 5.
    Berto, F. (2015). A modality called ‘negation’. Mind, 124(495), 761–793.CrossRefGoogle Scholar
  6. 6.
    Béziau, J.Y. (2006). Paraconsistent logic! (a reply to Slater). Sorites, 17, 17–25.Google Scholar
  7. 7.
    Birkhoff, G., & von Neumann, J. (1936). The logic of quantum mechanics. Annals of mathematics, 37(4), 823–842.CrossRefGoogle Scholar
  8. 8.
    Carnielli, W., Marcos, J., & de Amo, S. (2000). Formal inconsistency and evolutionary databases. Logic and Logical Philosophy, 8, 115–152.Google Scholar
  9. 9.
    Copeland, B.J. (1983). Pure semantics and applied semantics. Topoi, 2(2), 197–204.CrossRefGoogle Scholar
  10. 10.
    da Costa, N.C. (1974). On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic, 40(4), 497–510.CrossRefGoogle Scholar
  11. 11.
    De, M. (2011). Negation in context. Scotland: Ph.D. thesis, University of St Andrews.Google Scholar
  12. 12.
    De, M. (2013). Empirical negation. Acta Analytica, 28(1), 49–69.CrossRefGoogle Scholar
  13. 13.
    De, M., & Omori, H. (2014). More on empirical negation. In: Advances in modal logic, vol. 10, pp. 114-133. College publications.Google Scholar
  14. 14.
    De, M., & Omori, H. (2015). Classical negation and expansions of Belnap-Dunn logic. Studia Logica, 103(4), 825–851.CrossRefGoogle Scholar
  15. 15.
    Dunn, J.M. (1999). A comparative study of various model-theoretic treatments of negation: A history of formal negation. In: H. Wansing (ed.) What is Negation?, pp. 23-51. Kluwer Academic Publishers.Google Scholar
  16. 16.
    Goldblatt, R.I. (1974). Semantic analysis of orthologic. Journal of Philosophical Logic, 3(1), 19–35.CrossRefGoogle Scholar
  17. 17.
    Goodman, N. (1949). On likeness of meaning. Analysis, 10(1), 1–7.CrossRefGoogle Scholar
  18. 18.
    Gurevich, Y. (1977). Intuitionistic logic with strong negation. Studia Logica, 36(1/2), 49–59.CrossRefGoogle Scholar
  19. 19.
    Horn, L.R., & Wansing, H. (2015). Negation. In: E.N. Zalta (ed.) The Stanford Encyclopedia of Philosophy, Spring 2015 edn. http://plato.stanford.edu/entries/negation/.
  20. 20.
    Lenzen, W. (1996). Necessary conditions for negation operators. In: H. Wansing (ed.) Negation: A Notion in Focus, Perspective in Analytical Philosophy, pp. 3758. Walter de Gruyter.Google Scholar
  21. 21.
    Lewis, D. (1982). Logic for equivocators. Noûs, 16, 431–441.CrossRefGoogle Scholar
  22. 22.
    Marcos, J. (2005). On negation: Pure local rules. Journal of Applied Logic, 3, 185–219.CrossRefGoogle Scholar
  23. 23.
    Nelson, D. (1949). Constructible falsity. Journal of Symbolic Logic, 14, 16–26.CrossRefGoogle Scholar
  24. 24.
    Odintsov, S.P. (2008). Constructive Negations and Paraconsistency. Dordrecht: Springer-Verlag.CrossRefGoogle Scholar
  25. 25.
    Omori, H. (2015). Remarks on naive set theory based on LP. The Review of Symbolic Logic, 8(2), 279–295.CrossRefGoogle Scholar
  26. 26.
    Price, H. (1990). Why ‘not’? Mind, 99, 221–238.CrossRefGoogle Scholar
  27. 27.
    Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8(1), 219–241.CrossRefGoogle Scholar
  28. 28.
    Priest, G. (2006). Doubt truth to be a liar. Oxford University Press.Google Scholar
  29. 29.
    Priest, G. (2006). In Contradiction: A Study of the Transconsistent, 2nd edn. Oxford University Press.Google Scholar
  30. 30.
    Priest, G. (2008). Introduction to non-classical logics: From ifs to is, second edn. Cambridge University Press.Google Scholar
  31. 31.
    Quine, W.V. (1970). Philosophy of logic. Prentice Hall Inc.Google Scholar
  32. 32.
    Routley, R. (1980). Exploring Meinong’s jungle and beyond. McMaster University.Google Scholar
  33. 33.
    Routley, R., & Routley, V. (1972). The semantics of first-degree entailment. Noûs, 6(4), 335–390.CrossRefGoogle Scholar
  34. 34.
    Slater, B.H. (1995). Paraconsistent logics? Journal of Philosophical Logic, 24 (4), 451–454.CrossRefGoogle Scholar
  35. 35.
    Wansing, H. (2006). Contradiction and contrariety: Priest on negation. In Malinowski, J., & Pietruszczak, A. (Eds.), Essays in Logic and Ontology (p. 8193). New York, NY: Rodopi.Google Scholar
  36. 36.
    Wansing, H. (2016). On split negation, strong negation, information, falsification, and verification. In: K. Bimbó (ed.) J. Michael Dunn on Information Based Logics, pp. 161-189. Springer.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of KonstanzKonstanzGermany
  2. 2.Department of PhilosophyKyoto UniversityKyotoJapan

Personalised recommendations