Journal of Philosophical Logic

, Volume 45, Issue 3, pp 277–326 | Cite as

Predicativity, the Russell-Myhill Paradox, and Church’s Intensional Logic

  • Sean WalshEmail author


This paper sets out a predicative response to the Russell-Myhill paradox of propositions within the framework of Church’s intensional logic. A predicative response places restrictions on the full comprehension schema, which asserts that every formula determines a higher-order entity. In addition to motivating the restriction on the comprehension schema from intuitions about the stability of reference, this paper contains a consistency proof for the predicative response to the Russell-Myhill paradox. The models used to establish this consistency also model other axioms of Church’s intensional logic that have been criticized by Parsons and Klement: this, it turns out, is due to resources which also permit an interpretation of a fragment of Gallin’s intensional logic. Finally, the relation between the predicative response to the Russell-Myhill paradox of propositions and the Russell paradox of sets is discussed, and it is shown that the predicative conception of set induced by this predicative intensional logic allows one to respond to the Wehmeier problem of many non-extensions.


Russell-Myhill Intensional logic Predicativity 



I was lucky enough to be able to present parts of this work at a number of workshops and conferences, and I would like to thank the participants and organizers of these events for these opportunities. I would like to especially thank the following people for the comments and feedback which I received on these and other occasions: Robert Black, Roy Cook, Matthew Davidson, Walter Dean, Marie Duží, Kenny Easwaran, Fernando Ferreira, Martin Fischer, Rohan French, Salvatore Florio, Kentaro Fujimoto, Jeremy Heis, Joel David Hamkins, Volker Halbach, Ole Thomassen Hjortland, Luca Incurvati, Daniel Isaacson, Jönne Kriener, Graham Leach-Krouse, Hannes Leitgeb, Øystein Linnebo, Paolo Mancosu, Richard Mendelsohn, Tony Martin, Yiannis Moschovakis, John Mumma, Pavel Pudlák, Sam Roberts, Marcus Rossberg, Tony Roy, Gil Sagi, Florian Steinberger, Iulian Toader, Gabriel Uzquiano, Albert Visser, Kai Wehmeier, Philip Welch, Trevor Wilson, and Martin Zeman. This paper has likewise been substantially bettered by the feedback and comments of the editors and referees of this journal, to whom I express my gratitude. While composing this paper, I was supported by a Kurt Gödel Society Research Prize Fellowship and by Øystein Linnebo’s European Research Council funded project “Plurals, Predicates, and Paradox.”


  1. 1.
    Anthony Anderson, C. (1980). Some new axioms for the logic of sense and denotation: alternative (0). Noûs, 14(2), 217–234.CrossRefGoogle Scholar
  2. 2.
    Anthony Anderson, C. (1984). General intensional logic In D. Gabbay, & F. Guenthner (Eds.), Handbook of Philosophical Logic. Vol. II: Extensions of Classical Logic, volume 165 of Synthese Library, pp. 355–385. Dordrecht: Reidel.Google Scholar
  3. 3.
    Anthony Anderson, C. (1986). Some difficulties concerning Russellian intensional logic. Noûs, 20(1), 35–43.CrossRefGoogle Scholar
  4. 4.
    Anthony Anderson, C. (1987). Semantical antinomies in the logic of sense and denotation. Notre Dame Journal of Formal Logic, 28(1), 99–114.CrossRefGoogle Scholar
  5. 5.
    Anthony Anderson, C. (1998). Alonzo Church’s contributions to philosophy and intensional logic. Bulletin of Symbolic Logic, 4(2), 129–171.CrossRefGoogle Scholar
  6. 6.
    Barwise, J. (1975). Admissible sets and structures. Berlin: Springer.CrossRefGoogle Scholar
  7. 7.
    Bealer, G. (1982). Quality and concept. Oxford: Oxford University Press.CrossRefGoogle Scholar
  8. 8.
    Blass, A., Dershowitz, N., & Gurevich, Y. (2009). When are two algorithms the same? Bulletin of Symbolic Logic, 15(2), 145–168.CrossRefGoogle Scholar
  9. 9.
    Boolos, G. (1971). The iterative conception of set. The Journal of Philosophy, 68, 215–232. Reprinted in [10].CrossRefGoogle Scholar
  10. 10.
    Boolos, G. (1998). Logic, logic, and logic. Cambridge: Harvard University Press. Edited by Richard Jeffrey.Google Scholar
  11. 11.
    Chalmers, D.J. (2011). Propositions and attitude ascriptions: a Fregean account. Noûs, 45(4), 595–639.CrossRefGoogle Scholar
  12. 12.
    Chihara, C. (1973). Ontology and the vicious circle principle. Ithaca: Cornell University Press.Google Scholar
  13. 13.
    Church, A. (1943). [review of [72]]. The Journal of Symbolic Logic, 8(1), 45–47.CrossRefGoogle Scholar
  14. 14.
    Church, A. (1946). A formulation of the logic of sense and denotation [Abstract]. The Journal of Symbolic Logic, 11(1), 31.Google Scholar
  15. 15.
    Church, A. (1951). A formulation of the logic of sense and reference In P. Henle, H.M. Kallen, & S.K. Langer (Eds.), Structure, Method and Meaning: Essays in Honor of Henry M. Sheffer, pp. 2–24: Liberal Arts Press.Google Scholar
  16. 16.
    Church, A. (1974). Outline of a revised formulation of the logic of sense and denotation. II. Noûs, 8(2), 135–156.CrossRefGoogle Scholar
  17. 17.
    Church, A. (1984). Russell’s theory of identity of propositions. Philosophia Naturalis, 21, 513–522.Google Scholar
  18. 18.
    Church, A. (1993). A revised formulation of the logic of sense and denotation. Alternative (1). Noûs, 27(2), 141–157.CrossRefGoogle Scholar
  19. 19.
    de Rouilhan, P. (2005). Russell’s logics. In Logic Colloquium 2000, volume 19 of Lecture Notes in Logic, pp. 335–349. Association for Symbolic Logic, Urbana.Google Scholar
  20. 20.
    Demopoulos, W. (1994). Frege Hilbert and the conceptual structure of model theory. History and Philosophy of Logic, 15(2), 211–225.CrossRefGoogle Scholar
  21. 21.
    Demopoulos, W. (Ed.) (1995). Frege’s philosophy of mathematics. Cambridge: Harvard University Press.Google Scholar
  22. 22.
    Demopoulos, W. (1998). The philosophical basis of our knowledge of number. Noûs, 32(4), 481–503.CrossRefGoogle Scholar
  23. 23.
    Demopoulos, W., & Clark, P. (2005). The logicism of Frege, Dedekind, and Russell In S. Shapiro (Ed.), The Oxford handbook of philosophy of mathematics and logic, pp. 129–165. Oxford: Oxford University Press.Google Scholar
  24. 24.
    Dowty, D.R., Wall, R.E., & Peters, S. (1981). Introduction to Montague semantics. Dordrecht: Reidel.Google Scholar
  25. 25.
    Dummett, M (1963). The philosophical significance of Gödel’s theorem. Ratio, 5, 140–155.Google Scholar
  26. 26.
    Dummett, M. (1978). Truth and other enigmas. Cambridge: Harvard University Press.Google Scholar
  27. 27.
    Dummett, M. (1981). Frege: philosophy of language, 2nd edn. New York: Harper & Row.Google Scholar
  28. 28.
    Dummett, M. (1991). Frege: philosophy of mathematics. Cambridge: Harvard University Press.Google Scholar
  29. 29.
    Dummett, M. (1993). The seas of language. Oxford: Clarendon.Google Scholar
  30. 30.
    Dummett, M. (1994). What is mathematics about? In Mathematics and Mind, Logic and Computation in Philosophy, pp. 11–26. Reprinted in [29]: Oxford University Press.Google Scholar
  31. 31.
    Duží, M., Jespersen, B., & Materna, P. (2010). Procedural semantics for hyperintensional logic: foundations and applications of transparent intensional logic. Berlin: Springer.Google Scholar
  32. 32.
    Feferman, S. (1964). Systems of predicative analysis. The Journal of Symbolic Logic, 29, 1–30.CrossRefGoogle Scholar
  33. 33.
    Feferman, S. (1968). Lectures on Proof Theory. In Proceedings of the Summer School in Logic, pp. 1–107. Berlin: Springer.Google Scholar
  34. 34.
    Feferman, S. (2005). Predicativity In S. Shapiro (Ed.), The Oxford Handbook of Philosophy of Mathematics and Logic, pp. 590–624. Oxford: Oxford University Press.Google Scholar
  35. 35.
    Ferreira, F., & Wehmeier, K.F. (2002). On the consistency of the \({\Delta }_{1}^{1}\)-CA fragment of Frege’s Grundgesetze. Journal of Philosophical Logic, 31(4), 301–311.CrossRefGoogle Scholar
  36. 36.
    Fox, C., & Lappin, S. (2005). Foundations of intensional semantics. Malden: Blackwell.CrossRefGoogle Scholar
  37. 37.
    Frege, G.. Grundgesetze der Arithmetik: begriffsschriftlich abgeleitet. Jena: Pohle. 1893, 1903. Two volumes. Reprinted in [38].Google Scholar
  38. 38.
    Frege, G. (1962). Grundgesetze der Arithmetik: begriffsschriftlich abgeleitet. Hildesheim: Olms.Google Scholar
  39. 39.
    Frege, G. (2013). Basic laws of arithmetic. Oxford: Oxford University Press. Translated by Philip A. Ebert and Marcus Rossberg.Google Scholar
  40. 40.
    Gallin, D. (1975). Intensional and higher-order modal logic. North-Holland.Google Scholar
  41. 41.
    Gamut, L.T.F. (1991). Intensional logic and logical grammar, volume 2 of Logic, Language, and Meaning. Chicago: University of Chicago Press.Google Scholar
  42. 42.
    Goldfarb, W. (1988). Russell’s reasons for ramification In C. Wade Savage, & C. Anthony Anderson (Eds.), Essays of Bertrand Russell’s Metaphysics and Epistemology, volume 11 of Minnesota Studies in the Philosophy of Science, pp. 24–40. Minneapolis: University of Minnesota Press.Google Scholar
  43. 43.
    Heck Jr., R.G. (1996). The consistency of predicative fragments of Frege’s Grundgesetze der Arithmetik. History and Philosophy of Logic, 17(4), 209–220.CrossRefGoogle Scholar
  44. 44.
    Heim, I., & Kratzer, A. (1998). Semantics in generative grammar. Malden: Blackwell.Google Scholar
  45. 45.
    Heinzmann, G. (1986). Poincaré, Russell, Zermelo et Peano. Textes de la discussion (1906–1912) sur les fondements des mathématiques: des antinomie à la prédicativié. Blanchard.Google Scholar
  46. 46.
    Horty, J. (2007). Frege on definitions. Oxford: Oxford University Press.Google Scholar
  47. 47.
    Hrbacek, K., & Jech, T. (1999). Introduction to set theory, volume 220 of Monographs and Textbooks in Pure and Applied Mathematics, 3rd edn. New York: Dekker.Google Scholar
  48. 48.
    Jech, T. (2003). Set theory. Springer Monographs in Mathematics. Berlin: Springer. The Third Millennium Edition.Google Scholar
  49. 49.
    Jensen, R.B. (1972). The fine structure of the constructible hierarchy. Annals of Mathematical Logic, 4, 229–308.CrossRefGoogle Scholar
  50. 50.
    Kaplan, D. (1975). How to Russell a Frege-Church. Journal of Philosophy, 72 (19), 716–729.CrossRefGoogle Scholar
  51. 51.
    Keith, J. (1984). Devlin. Constructibility. Perspectives in Mathematical Logic. Berlin: Springer.Google Scholar
  52. 52.
    Klement, K.C. (2002). Frege and the logic of sense and reference. New York and London: Routledge.Google Scholar
  53. 53.
    Klement, K.C. (2003). The number of senses. Erkenntnis, 58(3), 303–323.CrossRefGoogle Scholar
  54. 54.
    Klement, K.C. (2010). The senses of functions in the logic of sense and denotation. Bulletin of Symbolic Logic, 16(2), 153–188.CrossRefGoogle Scholar
  55. 55.
    Klement, K.C. (2014). Russell-Myhill Paradox. In The Internet Encyclopedia of Philosophy. ISSN 2161-0002.
  56. 56.
    Kripke, S. (1964). Transfinite recursion on admissible ordinals I, II. The Journal of Symbolic Logic, 29(3), 161–162.Google Scholar
  57. 57.
    Kunen, K. (1980). Set theory, volume 102 of Studies in Logic and the Foundations of Mathematics. North-Holland.Google Scholar
  58. 58.
    Kunen, K. (2011). Set theory. London: College Publications.Google Scholar
  59. 59.
    Manzano, M. (1996). Extensions of First Order Logic, volume 19 of Cambridge Tracts in Theoretical Computer Science. Cambridge: Cambridge University Press.Google Scholar
  60. 60.
    Martin, D.A. (1970). Review of [75]. The Journal of Philosophy, 67(4), 111–114.CrossRefGoogle Scholar
  61. 61.
    Moschovakis, Y.N. (1993). Sense and denotation as algorithm and value. In Logic Colloquium ’90, volume 2 of Lecture Notes Logic, pp. 210–249. Berlin: Springer.Google Scholar
  62. 62.
    Myhill, J. (1952). Two ways of ontology in modern logic. Review of Metaphysics, 5(4), 639–655.Google Scholar
  63. 63.
    Myhill, J. (1958). Problems arising in the formalization of intensional logic. Logique et Analyse, 1, 78–83.Google Scholar
  64. 64.
    Parsons, C. (1982). Intensional logic in extensional language. The Journal of Symbolic Logic, 47(2), 289–328.CrossRefGoogle Scholar
  65. 65.
    Parsons, C. (1983). Mathematics in philosophy: selected essays. Ithaca: Cornell University Press.Google Scholar
  66. 66.
    Parsons, C. (2002). Realism and the debate on impredicativity, 1917–1944. In Reflections on the foundations of mathematics (Stanford, CA, 1998), volume 15 of Lecture Notes in Logic, pp. 372–389. Urbana: Associaton of Symbolic Logic.Google Scholar
  67. 67.
    Parsons, T. (1987). On the consistency of the first-order portion of Frege’s logical system. Notre Dame Journal of Formal Logic, 28(1), 161–168. Reprinted in [21].CrossRefGoogle Scholar
  68. 68.
    Parsons, T. (2001). The logic of sense and denotation: extensions and applications. In Logic, Meaning and Computation: Essays in Memory of Alonzo Church, volume 305 of Synthese Library, pp. 507–543. Dordrecht: Kluwer.Google Scholar
  69. 69.
    Platek, R.A. (1966). Foundations of recursion theory. Unpublished. Dissertation, Stanford University.Google Scholar
  70. 70.
    Poincaré, H. (1910). Über transfinite Zahlen, Teubner, Leipzig/Berlin.Google Scholar
  71. 71.
    Priest, G. (2013). Indefinite extensibility—dialetheic style. Studia Logica, 101 (6), 1263–1275.CrossRefGoogle Scholar
  72. 72.
    Quine, W.V.O. (1943). Notes on existence and necessity. The Journal of Philosophy, 40(5), 113–127.CrossRefGoogle Scholar
  73. 73.
    Quine, W.V. (1960). Carnap and logical truth. Synthese, 12(4), 350–374. Reprinted in [74].CrossRefGoogle Scholar
  74. 74.
    Quine, W.V. (1966). Ways of paradox and other essays. New York: Random House.Google Scholar
  75. 75.
    Quine, W.V. (1969). Set theory and its logic. Revised edition. Cambridge: Harvard University Press.Google Scholar
  76. 76.
    Quine, W.V. (1984). Review of [65]. The Journal of Philosophy, 81(12), 783–794.Google Scholar
  77. 77.
    Quine, W.V. (1986). Reply to Parsons In L.E. Hahn, & P.A. Schilpp (Eds.), The philosophy of W.V. Quine, volume 18 of Library of the Living Philosophers, pp. 398–403. Open Court, La Salle.Google Scholar
  78. 78.
    Russell, B. (1903). The principles of mathematics. Cambridge: Cambridge University Press.Google Scholar
  79. 79.
    Russell, B. (1907). On some difficulities in the theory of transfinite numbers and order types. Proceedings of the London Mathematical Society, s2-4(1), 29–53. Reprinted in [80].CrossRefGoogle Scholar
  80. 80.
    Russell, B. (1973). Essays in analysis. London: George Allen.Google Scholar
  81. 81.
    Sacks, G.E. (1990). Higher recursion theory. Perspectives in Mathematical Logic. Berlin: Springer.CrossRefGoogle Scholar
  82. 82.
    Schindler, R., & Zeman, M. (2010). Fine structure In M. Foreman, & A. Kanamori (Eds.), Handbook of set theory, vol. 1, pp. 605–656. Berlin: Springer.Google Scholar
  83. 83.
    Shapiro, S., & Wright, C. (2006). All things indefinitely extensible In A. Rayo, & G. Uzquiano (Eds.), Absolute Generality, pp. 255–304. Oxford: Clarendon Press.Google Scholar
  84. 84.
    Shoenfield, J.R. (1961). The problem of predicativity. In Essays on the Foundations of Mathematics, pp. 132–139. Jerusalem: Magnes Press.Google Scholar
  85. 85.
    Shoenfield, J.R. (1967). Chapter 9: set theory. In Mathematical Logic, pp. 238–315. Reading: Addison-Wesley.Google Scholar
  86. 86.
    Shoenfield, J.R. (1977). Axioms of set theory In J. Barwise (Ed.), Handbook of Mathematical Logic, volume 90 of Studies in Logic and the Foundations of Mathematics. North-Holland.Google Scholar
  87. 87.
    Soare, R.I. (1987). Recursively enumerable sets and degrees. Perspectives in Mathematical Logic. Berlin: Springer.CrossRefGoogle Scholar
  88. 88.
    Taschek, W.W. (2010). On sense and reference: a criticial reception In M. Potter, & T. Ricketts (Eds.), The Cambridge companion to Frege, pp. 293–341. Cambridge.Google Scholar
  89. 89.
    Thomason, R.H. (1980). A model theory for propositional attitudes. Linguistics and Philosophy, 4(1), 47–70.CrossRefGoogle Scholar
  90. 90.
    Tichý, P. (1988). The foundations of Frege’s logic. Berlin: De Gruyter.CrossRefGoogle Scholar
  91. 91.
    Tichý, P. (2004). Pavel Tichý’s collected papers in logic and philosophy. Dunedin: University of Otago Press.Google Scholar
  92. 92.
    Walsh, S. (2012). Comparing Hume’s Principle, Basic Law V and Peano Arithmetic. Annals of Pure and Applied Logic, 163, 1679–1709.CrossRefGoogle Scholar
  93. 93.
    Walsh, S. (2014). The strength of predicative abstraction. Unpublished. arXiv:1407.3860.
  94. 94.
    Walsh, S. Fragments of Frege’s Grundgesetze and Gödel’s constructible universe. The Journal of Symbolic Logic. forthcoming. arXiv:1407.3861.
  95. 95.
    Wehmeier, K.F. (1999). Consistent fragments of Grundgesetze and the existence of non-logical objects. Synthese, 121(3), 309–328.CrossRefGoogle Scholar
  96. 96.
    Wehmeier, K.F. (2004). Russell’s paradox in consistent fragments of Frege’s Grundgesetze der Arithmetik. In One hundred years of Russell’s paradox, volume 6 of de Gruyter Series in Logic and its Applications, pp. 247–257. Berlin: de Gruyter.Google Scholar
  97. 97.
    Weyl, H. (1918). Das Kontinuum. Kritische Untersuchungen über die Grundlagen der Analysis. Veit, Leipzig.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Logic and Philosophy of Science, 5100 Social Science PlazaUniversity of California, IrvineIrvineUSA

Personalised recommendations