Journal of Philosophical Logic

, Volume 45, Issue 1, pp 1–23 | Cite as

Term Models for Abstraction Principles

  • Leon Horsten
  • Øystein Linnebo


Kripke’s notion of groundedness plays a central role in many responses to the semantic paradoxes. Can the notion of groundedness be brought to bear on the paradoxes that arise in connection with abstraction principles? We explore a version of grounded abstraction whereby term models are built up in a ‘grounded’ manner. The results are mixed. Our method solves a problem concerning circularity and yields a ‘grounded’ model for the predicative theory based on Frege’s Basic Law V. However, the method is poorly behaved unless the background second-order logic is predicative.


Abstraction Logicism Groundedness Term model Frege Paradox Dummett 


  1. 1.
    Burgess, J.P. (2005). Fixing frege. Princeton, NJ: Princeton University Press.Google Scholar
  2. 2.
    Dummett, M. (1991). Frege: philosophy of mathematics. Cambridge, MA: Harvard University Press.Google Scholar
  3. 3.
    Dummett, M. (1998). Neo-Fregeans in Bad Company? In M. Schirn (Ed.), Philosophy of Mathematics Today. Oxford: Clarendon.Google Scholar
  4. 4.
    Ferreira, F., & Wehmeier, K. (2002). On the consistency of the \({\Delta }^1_1\)-CA Fragment of Frege’s Grundgesetze. Journal of Philosophical Logic, 31, 301–311.CrossRefGoogle Scholar
  5. 5.
    Fine, K. (2002). The limits of abstraction. Oxford: Oxford University Press.Google Scholar
  6. 6.
    Forster, T. (2008). The iterative conception of set. Review of Symbolic Logic, 1(1), 97–110.CrossRefGoogle Scholar
  7. 7.
    Ganea, M. (2007). Burgess’ pv is robinson’s q. Journal of Symbolic Logic, 72(2), 619–624.CrossRefGoogle Scholar
  8. 8.
    Hale, B., & Wright, C. (2001). Reason’s proper study. Oxford: Clarendon.CrossRefGoogle Scholar
  9. 9.
    Heck, Jr. R. G. (1996). The consistency of predicative fragments of Frege’s Grundgesetze der Arithmetik. History and Philosophy of Logic, 17, 209–220.CrossRefGoogle Scholar
  10. 10.
    Heck, Jr. R. G. (1997). Grundgesetze der Arithmetik I §§29–32. Notre Dame Journal of Formal Logic, 38(3), 437–474.CrossRefGoogle Scholar
  11. 11.
    Heck, Jr. R. G. (2012). Reading Frege’s Grundgesetze. Oxford: Oxford University Press.Google Scholar
  12. 12.
    Horsten, L. (2010). Impredicative identity criteria. Philosophy and Phenomenological Research, 80, 411–439.CrossRefGoogle Scholar
  13. 13.
    Horsten, L., & Leitgeb, H. (2009). How abstraction works. In A. Hieke, & H. Leitgeb (Eds.), Reduction and Elimination in Philosophy and the Sciences (pp. 217–226). Ontos Verlag, Frankfurt. Google Scholar
  14. 14.
    Kriener, J. (2014). The groundedness approach to class theory. Inquiry, 57(2), 244–273.CrossRefGoogle Scholar
  15. 15.
    Leitgeb, H. (Forthcoming) Abstraction grounded. In P. Ebert & M. Rossberg (Eds.), Abstractionism in Mathematics: Status Belli. Oxford: Oxford University Press.Google Scholar
  16. 16.
    Linnebo, Ø (2004). Frege’s proof of referentiality. Notre Dame Journal of Formal Logic, 45(2), 73–98.CrossRefGoogle Scholar
  17. 17.
    Linnebo, Ø (2009a). Bad company tamed. Synthese, 170(3), 371–391.CrossRefGoogle Scholar
  18. 18.
    Linnebo, Ø (2009b). Introduction [to a special issue on the bad company problem]. Synthese, 170(3), 321–329.CrossRefGoogle Scholar
  19. 19.
    Linnebo, Ø (2013). How to harness Basic Law V. In Forthcoming in Massimiliano Carrara, & F. Moltmann (Eds.), Plurality and Unity: Philosophy, Logic, and Semantics. Oxford: Oxford University Press. Google Scholar
  20. 20.
    Studd, J. (2015). Abstraction Reconceived. British Journal for the Philosophy of Science. doi: 10.1093/bjps/axu035.
  21. 21.
    Wehmeier, K. (1999). Consistent Fragments of Grundgesetze and the Existence of Non-Logical Objects. Synthese, 121, 309–28.CrossRefGoogle Scholar
  22. 22.
    Wright, C. (1998). The harmless impredicativity of N = (Hume’s Principle). In M. Schirn (Ed.), Philosophy of Mathematics Today. Oxford: Clarendon.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.University of BristolBristolEngland
  2. 2.University of OsloOsloNorway

Personalised recommendations