Journal of Philosophical Logic

, Volume 44, Issue 6, pp 713–727 | Cite as

Proof-Theoretic Semantics, a Problem with Negation and Prospects for Modality

Article

Abstract

This paper discusses proof-theoretic semantics, the project of specifying the meanings of the logical constants in terms of rules of inference governing them. I concentrate on Michael Dummett’s and Dag Prawitz’ philosophical motivations and give precise characterisations of the crucial notions of harmony and stability, placed in the context of proving normalisation results in systems of natural deduction. I point out a problem for defining the meaning of negation in this framework and prospects for an account of the meanings of modal operators in terms of rules of inference.

Keywords

Proof-Theoretic semantics Harmony Stability Negation Modality 

References

  1. 1.
    Belnap, N. (1962). Tonk, plonk and blink. Analysis, 22, 130–134.CrossRefGoogle Scholar
  2. 2.
    Biermann, G. M., & de Paiva, V. CV. (2000). On an intuitionistic modal logic. Studia Logica, 65, 383–416.CrossRefGoogle Scholar
  3. 3.
    Brandom, R. (2006). The John Locke lectures. http://www.pitt.edu/brandom/locke/index.html Accessed 08 Nov 2013.
  4. 4.
    Demos, R. (1917). A discussion of a certain type of negative propositions. Mind, 26, 188–196.CrossRefGoogle Scholar
  5. 5.
    Dummett, M. (1978a). The justification of deduction. In Truth and other enigmas (pp. 290–318). London: Duckworth.Google Scholar
  6. 6.
    Dummett, M. (1978b). The philosophical basis of intuitionistic logic. In Truth and other enigmas (pp. 215–247). London: Duckworth.Google Scholar
  7. 7.
    Dummett, M. (1981). Frege. Philosophy of language, 2nd edn. London: Duckworth.Google Scholar
  8. 8.
    Dummett, M. (1993a). The logical basis of metaphysics. Cambridge: Harvard University Press.Google Scholar
  9. 9.
    Dummett, M. (1993b). What is a theory of meaning? (I). In The seas of language (pp. 1–33). Oxford: Clarendon.Google Scholar
  10. 10.
    Dummett, M. (1993c). What is a theory of meaning? (II). In The seas of language (pp. 34–93). Oxford: Clarendon.Google Scholar
  11. 11.
    Dummett, M. (2002). “Yes”, “No” and “Can’t Say”. Mind 111, 289–295.Google Scholar
  12. 12.
    Ferreira, F. (2008). The co-ordination principles: a problem for bilateralism. Mind, 117, 1051–1057.CrossRefGoogle Scholar
  13. 13.
    Francez, N., & Dyckhoff, R. (2012). A note on harmony. Journal of Philosophical Logic, 41, 613–628.CrossRefGoogle Scholar
  14. 14.
    Frege, G. (1990). Die Grundlagen der Arithmetik. Hildesheim, Zürich, New York: Olms.Google Scholar
  15. 15.
    Gentzen, G. (1934). Untersuchungen über das logische Schließen. Mathematische Zeitschrift, 39(176–210), 405–431.Google Scholar
  16. 16.
    Gentzen, G. (1935). Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen, 112, 493–565.CrossRefGoogle Scholar
  17. 17.
    Gibbard, P. (2002). Price and Rumfitt on rejective negation and classical logic. Mind, 111, 297–303.CrossRefGoogle Scholar
  18. 18.
    Hand, M. (1999). Anti-realism and falsity. In D. Gabbay & H. Wansing (Eds.), What is negation? (pp. 185–198). Dortrecht: Kluwer.Google Scholar
  19. 19.
    Milne, P. (1994). Classical harmony: rules of inference and the meanings of the logical constants. Synthese, 100, 49–94.CrossRefGoogle Scholar
  20. 20.
    Pfenning, F., & Davies, R. (2001). A judgemental reconstruction of modal logic. Mathematical Structures in Computer Science, 11, 511–540.CrossRefGoogle Scholar
  21. 21.
    Prawitz, D. (1965). Natural deduction. Stockholm: Almqvist and Wiksell.Google Scholar
  22. 22.
    Prawitz, D. (1974). On the idea of a general proof-theory. Synthese, 27, 63–77.CrossRefGoogle Scholar
  23. 23.
    Prawitz, D. (1979). Proofs and the meaning and completeness of the logical constants. In J.H. et al. (Ed.), Essays on mathematical and philosophical logic (pp. 25–40). Dordrecht: Reidel.Google Scholar
  24. 24.
    Prawitz, D. (1987). Dummett on a theory of meaning and its impact on logic. In B. Taylor (Ed.), Michael Dummett: contributions to philosophy (pp. 117–165). Dordrecht: Nijhoff.Google Scholar
  25. 25.
    Prawitz, D. (1994a). Meaning theory and anti-realism. In B. McGuiness (Ed.), The philosophy of Michael Dummett (pp. 79–89). Dordrecht: Kluwer.Google Scholar
  26. 26.
    Prawitz, D. (1994b). Review of the logical basis of metaphysics. Mind, 103, 373–376.CrossRefGoogle Scholar
  27. 27.
    Prawitz, D. (2006). Meaning approached via proofs. Synthese, 148, 507–524.CrossRefGoogle Scholar
  28. 28.
    Prawitz, D. (2007). Pragmatist and verificationist theories of meaning. In R. Auxier & L. Hahn (Eds.), The philosophy of Michael Dummett (pp. 455–481). Chicago: Open Court.Google Scholar
  29. 29.
    Price, H. (1983). Sense, assertion, Dummett and denial. Mind, 92, 161–173.CrossRefGoogle Scholar
  30. 30.
    Price, H. (1990). Why ‘not’? Mind, 99, 221–238.CrossRefGoogle Scholar
  31. 31.
    Price, H. (2010). ‘Not’ again. http://prce.hu/w/preprints/NotAgain.pdf. Accessed 08 Nov 2013.
  32. 32.
    Prior, A. (1961). The runabout inference ticket. Analysis, 21, 38–39.CrossRefGoogle Scholar
  33. 33.
    Prior, A. (1964). Conjunction and contonktion revisited. Analysis, 24, 191–195.CrossRefGoogle Scholar
  34. 34.
    Read, S. (2000). Harmony and autonomy in classical logic. Journal of Philosophical Logic, 29, 123–154.CrossRefGoogle Scholar
  35. 35.
    Read, S. (2008). Harmony and modality. In L.K.C. Dégremont & H. Rückert (Eds.), Dialogues, logics and other strange things: essays in Honour of Shahid Rahman (pp. 285–303). London: College Publications.Google Scholar
  36. 36.
    Read, S. (2010). General-elimination harmony and the meaning of the logical constants. Journal of Philosophical Logic, 39, 557–576.CrossRefGoogle Scholar
  37. 37.
    Rumfitt, I. (2000). “Yes” and “No”. Mind, 109, 781–823.CrossRefGoogle Scholar
  38. 38.
    Rumfitt, I. (2002). Unilateralism disarmed: a reply to Dummett and Gibbard. Mind, 111, 305–312.CrossRefGoogle Scholar
  39. 39.
    Rumfitt, I. (2008). Co-ordination principles: a reply. Mind, 117, 1059–1063.CrossRefGoogle Scholar
  40. 40.
    Russell, B. (1919). On propositions: what they are and how they mean. In Proceedings of the Aristotelian society (Vol. 2, pp. 1–43).Google Scholar
  41. 41.
    Russell, B. (1956). The philosophy of logical atomism. In Logic and knowledge, essays 1901–1950 (pp. 175–283). Routledge.Google Scholar
  42. 42.
    Tennant, N. (1999). Negation, absurdity and contrariety. In D. Gabbay & H. Wansing (Eds.), What is negation? (pp. 199–222). Dortrecht: Kluwer.Google Scholar
  43. 43.
    Textor, M. (2011). Is ‘no’ a force indicator? No!. Analysis, 71(3), 448–456.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Philosophy, BirkbeckUniversity of London,LondonUK

Personalised recommendations