Journal of Philosophical Logic

, Volume 43, Issue 5, pp 883–901 | Cite as

The Intensional Many - Conservativity Reclaimed

Article

Abstract

Following on Westerståhl’s argument that many is not Conservative [9], I propose an intensional account of Conservativity as well as intensional versions of EXT and Isomorphism closure. I show that an intensional reading of many can easily possess all three of these, and provide a formal statement and proof that they are indeed proper intensionalizations. It is then discussed to what extent these intensionalized properties apply to various existing readings of many.

Keywords

Generalized Quantifiers Many Intensionality 

References

  1. 1.
    Barwise, J., & Cooper, R. (1981). Generalized quantifiers and natural language. Linguistics and Philosophy, 4, 159–219. doi: 10.1007/BF00350139.CrossRefGoogle Scholar
  2. 2.
    van Benthem, J. (1984). Questions about quantifiers. Journal of Symbolic Logic, 443–466.Google Scholar
  3. 3.
    Cohen, A. (2001). Relative readings of many, often, and generics. Natural Language Semantics, 9, 41–67. doi: 10.1023/A:1017913406219.CrossRefGoogle Scholar
  4. 4.
    Fernando, T., & Kamp, H. (1996). Expecting many. In: Proceedings of SALT 6, pp. 53–68.Google Scholar
  5. 5.
    Keenan, E.L., & Stavi, J. (1986). A semantic characterization of natural language determiners. Linguistics and Philosophy, 9, 253–326. doi: 10.1007/BF00630273.CrossRefGoogle Scholar
  6. 6.
    Lappin, S. (2000). An intensional parametric semantics for vague quantifiers. Linguistics and Philosophy, 23, 599–620. doi: 10.1023/A:1005638918877.CrossRefGoogle Scholar
  7. 7.
    Solt, S. (2009). The semantics of adjectives of quantity. PhD thesis, The City University of New York.Google Scholar
  8. 8.
    Tanaka, T. (2003). Semantic interpretation of many. In: JELS 20: papers from the twentieth national conference of the english linguistic society of Japan (pp. 188197).Google Scholar
  9. 9.
    Westerståhl, D. (1985). Logical constants in quantifier languages. Linguistics and Philosophy, 8, 387–413. doi: 10.1007/BF00637410.CrossRefGoogle Scholar
  10. 10.
    Westerståhl, D. (2007). Quantifiers in formal and natural languages. In: D. Gabbay, & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 14, pp. 223–338). Springer Netherlands.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations