Journal of Philosophical Logic

, Volume 43, Issue 2–3, pp 499–515 | Cite as

A DDL Approach to Pluralistic Ignorance and Collective Belief

  • Carlo Proietti
  • Erik J. Olsson


A group is in a state of pluralistic ignorance (PI) if, roughly speaking, every member of the group thinks that his or her belief or desire is different from the beliefs or desires of the other members of the group. PI has been invoked to explain many otherwise puzzling phenomena in social psychology. The main purpose of this article is to shed light on the nature of PI states – their structure, internal consistency and opacity – using the formal apparatus of Dynamic Doxastic Logic, and also to study the sense in which such states are “fragile”, i.e. to identify plausible conditions under which a PI state cascades into a state of shared belief as the result of announcement.


Pluralistic ignorance Informational cascades Dynamic logic Social epistemology 


  1. 1.
    Andreka, H., Ryan, M., Schobbens, P.Y. (2002). Operators and Laws for combining preference relations. Journal of Logic and Computation, 12(1), 13–53.CrossRefGoogle Scholar
  2. 2.
    Bikhchandani, S., Hirshleifer, D., Welch, I. (1998). Learning from the behavior of others: conformity, fads, and informational cascades. Journal of Economic Perspectives, 12, 151–170.CrossRefGoogle Scholar
  3. 3.
    Baltag, A., & Smets, S. (2007). A qualitative theory of dynamic interactive belief revision, LOFT07. Texts in Logic and Games, 3, 13–60.Google Scholar
  4. 4.
    van Benthem, J.F.A.K. (2007). Dynamic logic for belief revision. Journal of Applied Non-Classical. Logics, 2, 129–155.CrossRefGoogle Scholar
  5. 5.
    Bicchieri, C., & Fukui, Y. (1999). The great illusion: ignorance, informational cascades and the persistence of unpopular norms. Business Ethics Quarterly, 9, 127–155.CrossRefGoogle Scholar
  6. 6.
    Centola, D., Willer, R., Macy, M.V. (2005). The emperor’s dilemma: a computational model of self-enforcing norms. American Journal of Sociology, 110, 1009–1043.CrossRefGoogle Scholar
  7. 7.
    van Ditmarsch, H., van der Hoek, W., Kooi, B. (2007). Dynamic epistemic logic: Synthese library (Vol. 337). Springer.Google Scholar
  8. 8.
    Girard, P., & Seligman, G. (2009). An analytic logic of aggregation. Logic and its Applications. Lecture Notes in Computer Science, 5378, 146–161.CrossRefGoogle Scholar
  9. 9.
    Hansen, J.U. A logic-based approach to pluralistic ignorance, online paper.
  10. 10.
    Hansen, J.U. (2011). A logic toolbox for modeling knowledge and information in multi-agent systems and social epistemology. PhD Thesis Roskilde University. Computer Science Research. Report no. 133, ISSN 0109-9779.Google Scholar
  11. 11.
    Hendricks, V.F. (2010). Knowledge transmissibility and pluralistic ignorance. Metaphilosophy, 41(3), 279–291.CrossRefGoogle Scholar
  12. 12.
    Hintikka, J. (1962). Knowledge and belief: An introduction to the logic of the two notions. Cornell: Cornell University Press.Google Scholar
  13. 13.
    Hoek, W.v.d., & Lomuscio, A. (2004). A logic for ignorance. Electronic Notes in Theoretical Computer Science, 85(2), 117–133.CrossRefGoogle Scholar
  14. 14.
    Katz, D., & Allport, F.H. (1931). Student attitudes. Syracuse, New York: Craftsman.Google Scholar
  15. 15.
    Krech, D., & Crutchfield, R.S. (1948). Theories and problems of social psychology. New York: McGraw-Hill.CrossRefGoogle Scholar
  16. 16.
    Latane, B., & Darley, J. (1969). Bystander Apathy. American Scientist, 57, 244–268.Google Scholar
  17. 17.
    Leitgeb, H., & Segerberg, K. (2007). Dynamic doxastic logic: why, how and where to. Synthese, 155, 167–190.CrossRefGoogle Scholar
  18. 18.
    Malcolm, N. (1958). Ludwig Wittgenstein: A memoir. London: Oxford University Press.Google Scholar
  19. 19.
    Matz, D.C., & Wood, W. (2005). Cognitive dissonance in groups: the consequences of disagreement. Journal of Personality and Social Psychology, 88(1), 22–37.CrossRefGoogle Scholar
  20. 20.
    Noelle-Neumann, E. (1974). The spiral of silence: a theory of public opinion. Journal of Communication, 24(2), 43–51.CrossRefGoogle Scholar
  21. 21.
    Pini, M.S., Rossi, F., Venable, K.B., Walsh, T. (2009). Aggregating partially ordered preferences. Journal of Logic and Computation, 19(3), 475–502. doi: 10.1093/logcom/exn012.CrossRefGoogle Scholar
  22. 22.
    Prentice, D.A., & Miller, D.T. (1993). Pluralistic ignorance and alcohol use on campus: some consequences of misperceiving the social norm. Journal of Personality and Social Psychology, 64(2), 243–256.CrossRefGoogle Scholar
  23. 23.
    Segerberg, K. (1995). Belief revision from the point of view of doxastic logic. Bulletin of the IGPL, 3, 535–553.CrossRefGoogle Scholar
  24. 24.
    Segerberg, K. (2006). Moore problems in full dynamic doxastic logic In J. Malinowski & A. Pietruszczak (Eds.), Essays in logic and ontology (poznan studies in the philosophy of the sciences and the humanities, 91) (pp. 95–110). Amsterdam, New York: Rodopi.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of PhilosophyLund UniversityLundSweden

Personalised recommendations