Advertisement

Journal of Philosophical Logic

, Volume 42, Issue 3, pp 535–549 | Cite as

Daggers, Kernels, Baer *-semigroups, and Orthomodularity

  • John Harding
Article

Abstract

We discuss issues related to constructing an orthomodular structure from an object in a category. In particular, we consider axiomatics related to Baer *-semigroups, partial semigroups, and various constructions involving dagger categories, kernels, and biproducts.

Keywords

Baer *-semigroups Orthomodular poset Dagger kernel category Biproduct 

References

  1. 1.
    Abramsky, S., & Coecke, B. (2004). A categorical semantics of quantum protocols. In Proceedings of the 19th annual IEEE Symposium on Logic in Computer Science (LiCS‘04) (pp. 415–425). IEEE Computer Science Press. (Extended version at arXiv:quant-ph/0402130).
  2. 2.
    Barnum, H., & Wilce, A. (2009). Ordered linear spaces and categories as frameworks for information-processing characterizations of quantum and classical theory (preprint).Google Scholar
  3. 3.
    Beran, L. (1985). Orthomodular lattices: algebraic approach. Dordrecht: Reidel Publishing Company.CrossRefGoogle Scholar
  4. 4.
    Berberian, S.K. (1972). Baer *-rings, Die Grundlehren der mathematischen Wissenschaften band 195. New York-Berlin: Springer-Verlag.Google Scholar
  5. 5.
    Coecke, B., & Duncan, R. (2011). Interacting quantum observables: Categorical algebra and diagrammatics. New Journal of Physics, 13, 85.Google Scholar
  6. 6.
    Crown, G.D. (1975). Some orthomodular posets of vector bundles. Nature Science and Mathematics, 15(1–2), 11–25.Google Scholar
  7. 7.
    Dalla Chiara, M.L., Giuntini, R., Greechie, R. (2004). Reasoning in quantum theory: sharp and unsharp quantum logics. Dordrecht: Kluwer.CrossRefGoogle Scholar
  8. 8.
    Dvurećenskij, A. (1993). Gleason’s theorem and its applications. Mathematics and its applications (East European Series) (Vol. 60). Dordrecht: Kluwer.CrossRefGoogle Scholar
  9. 9.
    Foulis, D.J. (1960). Baer *-semigroups. Proceedings of the American Mathematical Society, 11, 648–654.Google Scholar
  10. 10.
    Foulis, D.J. (1961). Conditions for the modularity of an orthomodular lattice. Pacific Journal of Mathematics, 11, 889–895.CrossRefGoogle Scholar
  11. 11.
    Foulis, D.J. (1963). Relative inverses in Baer *-semigroups. Michigan Mathematical Journal, 10, 65–84.CrossRefGoogle Scholar
  12. 12.
    Foulis, D.J. (1965). Semigroups coordinatizing orthomodular geometries. Canadian Journal of Mathematics, 17, 40–51.CrossRefGoogle Scholar
  13. 13.
    Foulis, D.J. (1968). Multiplicative elements in Baer *-semigroups. Mathematische Annalen, 175, 297–302.CrossRefGoogle Scholar
  14. 14.
    Greechie, R.J. (2009). Oral communication.Google Scholar
  15. 15.
    Gudder, S.P. (1972). Partial algebraic structures associated with orthomodular posets. Pacific Journal of Mathematics, 41, 717–730.CrossRefGoogle Scholar
  16. 16.
    Gudder, S.P., & Schelp, R.H. (1970). Coordinatization of orthocomplemented and orthomodular posets. Proceedings of the American Mathematical Society, 25, 229–237.CrossRefGoogle Scholar
  17. 17.
    Harding, J. (1996). Decompositions in quantum logic. Transactions of the American Mathematical Society, 348(5), 1839–1862.CrossRefGoogle Scholar
  18. 18.
    Harding, J. (2006). Orthomodularity of decompositions in a categorical setting. International Journal of Theoretical Physics, 45(6), 1117–1128.CrossRefGoogle Scholar
  19. 19.
    Harding, J. (2009). A link between quantum logic and categorical quantum mechanics. International Journal of Theoretical Physics, 48(3), 769–802.CrossRefGoogle Scholar
  20. 20.
    Herrlich, H., & Strecker, G. (1973). Category theory: an introduction. Allyn and Bacon.Google Scholar
  21. 21.
    Heunen, C., & Jacobs, B. (2009). Quantum logic in dagger kernel categories, to appear. In B. Coecke, P. Panangaden & P. Selinger (Eds.), Proceedings of the 6th international workshop on quantum programming languages (QPL2009).. Elect Notes in Theor. Comp. Sci. Amsterdam: Elsevier. Available from: http://arxiv.org/abs/0902.2355.
  22. 22.
    Jacobs, B. (2010). Orthomodular lattices, Foulis semigroups, and dagger kernel categories. Logical Methods in Computer Science, 6(2:1), 26.Google Scholar
  23. 23.
    Kalmbach, G. (1983). Orthomodular lattices. London mathematical society monographs (Vol. 18). London: Academic Press.Google Scholar
  24. 24.
    Karoubi, M. (2008). K-Theory: an introduction. Heidelberg: Springer-Verlag.Google Scholar
  25. 25.
    Kuhn, K. (1983). Extending homomorphisms from orthomodular lattices to Foulis semigroups. Contributions to General Algebra, 2 (Klagenfurt, 1982) (pp. 229–232). Vienna: Hölder-Pichler-Tempsky.Google Scholar
  26. 26.
    Maeda, F., & Maeda, S. (1970). Theory of symmetric lattices. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 173. New York-Berlin: Springer-Verlag.Google Scholar
  27. 27.
    Mac Lane, S. (1971). Categories for the working mathematician, Springer graduate texts in mathematics (Vol. 5). New York: Springer.Google Scholar
  28. 28.
    Pták, P., & Pulmanová, S. (1991). Orthomodular structures as quantum logics. Fundamental theories of physics (Vol. 44). Dordrecht: Kluwer.Google Scholar
  29. 29.
    Selinger, P. (2007). Dagger compact closed categories and completely positive maps (extended abstract). Electronic Notes in Theoretical Computer Science, 170, 139–163.CrossRefGoogle Scholar
  30. 30.
    Selinger, P. (2008). Idempotents in dagger categories (extended abstract). Electronic Notes in Theoretical Computer Science, 210, 107–122.CrossRefGoogle Scholar
  31. 31.
    Skornyakov, L.A. (1964). Complemented modular lattices and regular rings. Edinburgh-London: Oliver and Boyd.Google Scholar
  32. 32.
    von Neumann, J. (1960). Continuous geometry. Princeton: Princeton University Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNew Mexico State UniversityLas CrucesNew Mexico

Personalised recommendations