CIFOL: Case-Intensional First Order Logic

(I) Toward a Theory of Sorts


This is part I of a two-part essay introducing case-intensional first order logic (CIFOL), an easy-to-use, uniform, powerful, and useful combination of first-order logic with modal logic resulting from philosophical and technical modifications of Bressan’s General interpreted modal calculus (Yale University Press 1972). CIFOL starts with a set of cases; each expression has an extension in each case and an intension, which is the function from the cases to the respective case-relative extensions. Predication is intensional; identity is extensional. Definite descriptions are context-independent terms, and lambda-predicates and -operators can be introduced without constraints. These logical resources allow one to define, within CIFOL, important properties of properties, viz., extensionality (whether the property applies, depends only on an extension in one case) and absoluteness, Bressan’s chief innovation that allows tracing an individual across cases without recourse to any notion of “rigid designation” or “trans-world identity.” Thereby CIFOL abstains from incorporating any metaphysical principles into the quantificational machinery, unlike extant frameworks of quantified modal logic. We claim that this neutrality makes CIFOL a useful tool for discussing both metaphysical and scientific arguments involving modality and quantification, and we illustrate by discussing in diagrammatic detail a number of such arguments involving the extensional identification of individuals via absolute (substance) properties, essential properties, de re vs. de dicto, and the results of possible tests.


  1. 1.

    Bacon, J. (1980). Substance and first-order quantification over individual-concepts. Journal of Symbolic Logic, 45(2), 193–203.

    Article  Google Scholar 

  2. 2.

    Barcan, R. (1947). The identity of individuals in a strict functional calculus of second order. Journal of Symbolic Logic, 12, 12–15.

    Article  Google Scholar 

  3. 3.

    Belnap, N. (2006). Bressan’s type-theoretical combination of quantification and modality. In H. Lagerlund, S. Lindström, R. Sliwinski (Eds.), Modality matters: Twenty-five essays in honour of Krister Segerberg (pp. 31–53). Uppsala: Uppsala Philosophical Studies, Vol. 53, Uppsala University.

    Google Scholar 

  4. 4.

    Belnap, N. (2013). Internalizing case-relative truth in CIFOL. In T. Müller (Ed.), Nuel Belnap’s work on indeterminism and free action. Berlin: Springer (forthcoming).

  5. 5.

    Belnap, N., & Müller, T. (2012). BH-CIFOL: Case-intensional first order logic. (II) Branching histories (forthcoming).

  6. 6.

    Bressan, A. (1972). A general interpreted modal calculus. New Haven, CT: Yale University Press.

    Google Scholar 

  7. 7.

    Bressan, A. (1973). The interpreted type-free modal calculus MC . Rendiconti del Seminario Matematico della Università di Padova, 49, 157–194.

    Google Scholar 

  8. 8.

    Bugno, M., Słota, E., Pieńkowska-Schelling, A., Schelling, C., et al. (2009). Identification of chromosome abnormalities in the horse using a panel of chromosome-specific painting probes generated by microdissection. Acta Veterinaria Hungarica, 57(3), 369.

    Article  Google Scholar 

  9. 9.

    Butterfield, J. (2006). Against pointillisme about mechanics. British Journal for the Philosophy of Science, 57(4), 709–753.

    Article  Google Scholar 

  10. 10.

    Carnap, R. (1947). Meaning and necessity: A study in semantics and modal logic. Chicago, IL: University of Chicago Press. Enlarged edition, 1956.

    Google Scholar 

  11. 11.

    Dummett, M. (1973). Frege: Philosophy of language. London: Duckworth.

    Google Scholar 

  12. 12.

    Fitting, M.C. (2004). First-order intensional logic. Annals of Pure and Applied Logic, 127, 171–193.

    Article  Google Scholar 

  13. 13.

    Fitting, M.C. (2011). Intensional logic. In E.N. Zalta (Ed.), The Stanford encyclopedia of philosophy (winter 2011 edn.).

  14. 14.

    Gallin, D. (1975). Intensional and higher-order modal logic: With applications to Montague semantics. Mathematical studies (Vol. 19). Amsterdam: North Holland.

    Google Scholar 

  15. 15.

    Garson, J. (2005). Unifying quantified modal logic. Journal of Philosophical Logic, 34, 621–649.

    Article  Google Scholar 

  16. 16.

    Geach, P.T. (1962). Reference and generality: An examination of some medieval and modern theories. Ithaca, NY: Cornell University Press.

    Google Scholar 

  17. 17.

    Gibbard, A. (1975). Contingent identity. Journal of Philosophical Logic, 4, 187–221.

    Article  Google Scholar 

  18. 18.

    Gupta, A. (1980). The logic of common nouns: An investigation in quantified modal logic. New Haven, CT: Yale University Press.

    Google Scholar 

  19. 19.

    Hughes, G.E., & Cresswell, M.J. (1996). An new introduction to modal logic. London: Routledge.

    Book  Google Scholar 

  20. 20.

    Kishida, K. (2010). Generalized topological semantics for first-order modal logic. Ph.D. thesis, University of Pittsburgh.

  21. 21.

    Kripke, S. (1959). A completeness theorem in modal logic. The Journal of Symbolic Logic, 24, 1–15.

    Article  Google Scholar 

  22. 22.

    Kripke, S. (1963). Semantical considerations in modal logic. Acta Philosophica Fennica, 16, 83–94.

    Google Scholar 

  23. 23.

    Lewis, D.K. (1968). Counterpart theory and quantified modal logic. Journal of Philosophy, 65(5), 113–126.

    Article  Google Scholar 

  24. 24.

    Lowe, E.J. (2009). More kinds of being. Oxford: Blackwell.

    Google Scholar 

  25. 25.

    Montague, R. (1973). The proper treatment of quantification in ordinary English. In J. Hintikka, J. Moravcsik, P. Suppes (Eds.), Approaches to natural language: Proceedings of the 1970 Stanford workshop on grammar and semantics (pp. 221–242). Dordrecht: D. Reidel. Reprinted as Chap. 8 of Montague, R. (1974). Formal philosophy: Selected papers of Richard Montague. New Haven, CT: Yale University Press. Edited and with an introduction by R.H. Thomason.

  26. 26.

    Muskens, R. (2007). Higher-order modal logic. In P. Blackburn, J. van Benthem, F. Wolter (Eds.), Handbook of modal logic (pp. 621–654). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  27. 27.

    Parks, Z. (1972). Classes and change. Journal of Philosophical Logic, 1, 162–169.

    Article  Google Scholar 

  28. 28.

    Quine, W. (1960). Word and object. Cambridge, MA: MIT Press.

    Google Scholar 

  29. 29.

    Sider, T. (2000). The stage view and temporary intrinsics. Analysis, 60, 84–88.

    Article  Google Scholar 

  30. 30.

    Suppes, P. (1957). Introduction to logic. Princeton: D. van Nostrand.

    Google Scholar 

  31. 31.

    Thomason, R.H. (1969). Modal logic and metaphysics. In K. Lambert (Ed.), The logical way of doing things (pp. 119–146). New Haven, CT: Yale University Press.

    Google Scholar 

  32. 32.

    Thomason, R.H. (1970). Indeterminist time and truth-value gaps. Theoria, 36, 264–281.

    Article  Google Scholar 

  33. 33.

    Tichý, P. (1988). The foundations of Frege’s logic. Berlin: De Gruyter.

    Book  Google Scholar 

  34. 34.

    Van Leeuwen, J. (1991). Individuals and sortal concepts. An essay in logical descriptive metaphysics. Ph.D. thesis, Universiteit van Amsterdam.

  35. 35.

    Wiggins, D. (2001). Sameness and substance renewed. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  36. 36.

    Williamson, T. (2013). Barcan formulas in second-order modal logic. In M. Frauchiger (Ed.), Themes from Barcan Marcus, Lauener Library of Analytical Philosophy (Vol. 3, pp. 1–31). Frankfurt: Ontos Verlag.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Thomas Müller.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Belnap, N., Müller, T. CIFOL: Case-Intensional First Order Logic. J Philos Logic 43, 393–437 (2014).

Download citation


  • Modal logic
  • Quantification
  • Sortal
  • Tracing
  • Substance