Journal of Philosophical Logic

, Volume 42, Issue 2, pp 391–407

The Syllogistic with Unity

Article

Abstract

We extend the language of the classical syllogisms with the sentence-forms “At most 1 p is a q” and “More than 1 p is a q”. We show that the resulting logic does not admit a finite set of syllogism-like rules whose associated derivation relation is sound and complete, even when reductio ad absurdum is allowed.

Keywords

Syllogisms Proof theory Logic and natural language Computational complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bentham, G. (1827). Outline of a new system of logic, with a critical examination of Dr. Whately’s “Elements of Logic”. London: Hunt and Clarke.Google Scholar
  2. 2.
    Boole, G. (1868). Of propositions numerically definite. Transactions of the Cambridge Philosophical Society, XI(II), 396–411.Google Scholar
  3. 3.
    Boole, G. (1952). Collected logical works: Studies in logic and probability (Vol. 1). La Salle, IL: Open Court.Google Scholar
  4. 4.
    Corcoran, J. (1972). Completeness of an ancient logic. Journal of Symbolic Logic, 37(4), 696–702.CrossRefGoogle Scholar
  5. 5.
    De Morgan, A. (1847). Formal Logic: Or, the calculus of inference, necessary and probable. London: Taylor and Walton.Google Scholar
  6. 6.
    Eisenbrand, F., & Shmonin, G. (2006). Carathéodory bounds for integer cones. Operations Research Letters, 34(5), 564–568.CrossRefGoogle Scholar
  7. 7.
    Fogelin, R. J. (1976). Hamilton’s theory of quantifying the predicate—A correction. The Philosophical Quarterly, 26(105), 352–353.CrossRefGoogle Scholar
  8. 8.
    Grattan-Guinness, I. (2000). The search for mathematical roots, 1870–1940: Logics, set theories and the foundations of mathematics from Cantor through Russell to Gödel. Princeton, NJ: Princeton University Press.Google Scholar
  9. 9.
    Hacker, E., & Parry, W. (1967). Pure numerical Boolean syllogisms. Notre Dame Journal of Formal Logic, 8(4), 321–324.CrossRefGoogle Scholar
  10. 10.
    Hamilton, W. (1860). Lectures on logic (Vol. II). Edinburgh and London: William Blackwood and Sons.Google Scholar
  11. 11.
    Jevons, W. (1871). On a general system of numerically definite reasoning. Memoirs of the Manchester Literary and Philosophical Society (3rd Series), 4, 330–352.Google Scholar
  12. 12.
    Jevons, W. (1890). Pure logic and other minor works. London: Macmillan.Google Scholar
  13. 13.
    Murphree, W. (1998). Numerical term logic. Notre Dame Journal of Formal Logic, 39(3), 346–362.CrossRefGoogle Scholar
  14. 14.
    Pratt-Hartmann, I. (2008). On the computational complexity of the numerically definite syllogistic and related logics. Bulletin of Symbolic Logic, 14(1), 1–28.CrossRefGoogle Scholar
  15. 15.
    Pratt-Hartmann, I. (2009). No syllogisms for the numerical syllogistic. In: O. Grumberg, et al. (Eds.), Languages: From formal to natural (Vol. 5533 of Lecture Notes in Computer Science, pp. 192–203). Berlin: Springer.CrossRefGoogle Scholar
  16. 16.
    Pratt-Hartmann, I. (2011). The Hamiltonian syllogistic. Journal of Logic, Language and Information, 20(4), 445–474.CrossRefGoogle Scholar
  17. 17.
    Pratt-Hartmann, I., & Moss, L. S. (2009). Logics for the relational syllogistic. Review of Symbolic Logic, 2(4), 647–683.CrossRefGoogle Scholar
  18. 18.
    Smiley, T. (1973). What is a syllogism? Journal of Philosophical Logic, 2, 135–154.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.School of Computer ScienceManchester UniversityManchesterUK

Personalised recommendations