Journal of Philosophical Logic

, Volume 42, Issue 1, pp 195–219

Paradox and Potential Infinity

Article

Abstract

We describe a variety of sets internal to models of intuitionistic set theory that (1) manifest some of the crucial behaviors of potentially infinite sets as described in the foundational literature going back to Aristotle, and (2) provide models for systems of predicative arithmetic. We close with a brief discussion of Church’s Thesis for predicative arithmetic.

Keywords

Potential infinity Intuitionism Predicative arithmetic Church’s thesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aristotle (1984). Physics. In J. Barnes (Ed.), The complete works of Aristotle (Vol. 1, pp. 315–446). Bollingen Series LXXI. 2. Princeton, NJ: Princeton University Press. [References by Bekker number].Google Scholar
  2. 2.
    Beeson, M. (1985). Foundations of constructive mathematics. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge (Vol. 6, xxiii+466). Berlin, DE: Springer-Verlag.Google Scholar
  3. 3.
    Bolzano, B. (1851). Paradoxion des Unendlichen (xii+134 pp.). Leipzig, DE: C. H. Reclam. Reprinted as Paradoxes of the infinite (189 pp.). D. A. Steele (tr.) New Haven: Yale University Press (1950). [Translations of passages from this work are by the author].Google Scholar
  4. 4.
    Brouwer, L. E. J. (1975). Points and spaces. In A. Heyting (Ed.), L. E. J. Brouwer collected works. Philosophy and foundations of mathematics (Vol. 1, pp. 522–538). Amsterdam, NL: North-Holland Publishing Company.Google Scholar
  5. 5.
    Chomsky, N. (1981). On the representation of form and function. The linguistic review (Vol. 1, pp. 3–40).Google Scholar
  6. 6.
    Crossley, J., & Nerode, A. (1974). Combinatorial functors. Ergebnisse der mathematik und ihrer Grenzgebiete. Band 81 (viii+146). New York, NY: Springer-Verlag.Google Scholar
  7. 7.
    Dedekind, R. (1888). Was sind und was sollen die Zahlen? (xv + 58). Braunsweig, DE: Friedrich Vieweg und Sohn. Reprinted as The nature and meaning of numbers. Essays on the theory of numbers (pp. 29–115). W. Beman (tr.) New York: Dover Publications (1963).Google Scholar
  8. 8.
    Dekker, J., & Myhill, J. (1960). Recursive equivalence types (Vol. 3, number 3, pp. 67–214). New series. University of California Publications in Mathematics.Google Scholar
  9. 9.
    Du Bois-Reymond, P. (1882). Die allgemeine Funktionentheorie (xiv+292). Tübingen, DE: Verlag der H. Laupp’schen Buchhandlung. [Translations from this work are by the author].Google Scholar
  10. 10.
    Dummett, M. (1977). Elements of intuitionism (1st ed., xii+467). Oxford, UK: Clarendon Press. (Second Edition (2000)).Google Scholar
  11. 11.
    Gibson, C. G. (1971). On the definition of an infinite species. Nieuw Archief voor Wiskunde (Third Series, no. 19, pp. 196–197).Google Scholar
  12. 12.
    Grayson, R. (1978). Intuitionistic set theory (v+117). D. Phil. Dissertation. Oxford, UK: University of Oxford.Google Scholar
  13. 13.
    Heyting, A. (1930). Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussischen Akademie der Wissenschaften. Physikalisch- mathematische Klasse (pp. 42–56).Google Scholar
  14. 14.
    Heyting, A. (1930). Die formalen Regeln der intuitionistischen Mathematik I. Sitzungsberichte der Preussischen Akademie der Wissenschaften. Physikalisch- mathematische Klasse (pp. 57–71).Google Scholar
  15. 15.
    Heyting, A. (1930). Die formalen Regeln der intuitionistischen Mathematik II. Sitzungsberichte der Preussischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse (pp. 158–169).Google Scholar
  16. 16.
    Heyting, A. (1976). Intuitionism. An introduction (3rd revised ed., ix+137). Amsterdam, NL: North-Holland Publishing Company.Google Scholar
  17. 17.
    Kant, I. (1929). Critique of pure reason (xiii+681). N. K. Smith (tr.) New York, NY: St. Martin’s Press.Google Scholar
  18. 18.
    Kleene, S. C. (1945). On the interpretation of intuitionistic number theory. The Journal of Symbolic Logic, 10(4), 109–124.CrossRefGoogle Scholar
  19. 19.
    McCarty, C. (1984). Realizability and recursive mathematics (281 pp.). Pittsburgh, PA: Department of Computer Science, Carnegie-Mellon University. Report number CMU-CS-84-131.Google Scholar
  20. 20.
    McCarty, C. (1988). Markov’s principle, isols, and Dedekind-finite sets. The Journal of Symbolic Logic, 53(4), 1042–1069.CrossRefGoogle Scholar
  21. 21.
    McCarty, C. (2006). Thesis and variations. In A. Olszewski, J. Wolenski, & R. Janusz (Eds.), Church’s thesis after 70 years (pp. 281–303). Frankfurt, DE: Ontos Verlag.Google Scholar
  22. 22.
    McCarty, C. (2008). The new intuitionism. In M. van Atten, et al. (Eds.), One hundred years of intuitionism (1907–2007) (pp. 37–49). Boston, MA: Birkhuser.CrossRefGoogle Scholar
  23. 23.
    Minio, R. (1974). Finite and countable sets in intuitionistic analysis (35 pp.). M.Sc. dissertation. Oxford, UK: University of Oxford.Google Scholar
  24. 24.
    Nelson, E. (1986). Predicative arithmetic. Mathematical notes (Number 32, viii+189). Princeton, NJ: Princeton University Press.Google Scholar
  25. 25.
    Rogers, H. (1967). Theory of recursive functions and effective computability (xix+482). New York: McGraw-Hill Publishing Company.Google Scholar
  26. 26.
    Thomson, J. (1954). Tasks and super-tasks. Analysis, 15(1), 1–13.Google Scholar
  27. 27.
    Troelstra, A. (1967). Finite and infinite in intuitionistic mathematics. Compositio Mathematica, 18(1–2), 94–116.Google Scholar
  28. 28.
    Troelstra, A., & D. van Dalen (1988). Constructivism in mathematics: An introduction (Vol. I, xx+342+XIV). Amsterdam, NL: North-Holland.Google Scholar
  29. 29.
    Wittgenstein, L. (1976). In C. Diamond (Ed.), Wittgenstein’s lectures on the foundations of mathematics. Cambridge, 1939 (300 pp.). Ithaca, NY: Cornell University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.The Logic ProgramIndiana UniversityBloomingtonUSA

Personalised recommendations