Journal of Philosophical Logic

, Volume 42, Issue 1, pp 161–193 | Cite as

Stratified Belief Bases Revision with Argumentative Inference

  • Marcelo Alejandro Falappa
  • Alejandro Javier García
  • Gabriele Kern-Isberner
  • Guillermo Ricardo Simari
Article

Abstract

We propose a revision operator on a stratified belief base, i.e., a belief base that stores beliefs in different strata corresponding to the value an agent assigns to these beliefs. Furthermore, the operator will be defined as to perform the revision in such a way that information is never lost upon revision but stored in a stratum or layer containing information perceived as having a lower value. In this manner, if the revision of one layer leads to the rejection of some information to maintain consistency, instead of being withdrawn it will be kept and introduced in a different layer with lower value. Throughout this development we will follow the principle of minimal change, being one of the important principles proposed in belief change theory, particularly emphasized in the AGM model. Regarding the reasoning part from the stratified belief base, the agent will obtain the inferences using an argumentative formalism. Thus, the argumentation framework will decide which information prevails when sentences of different layers are used for entailing conflicting beliefs. We will also illustrate how inferences are changed and how the status of arguments can be modified after a revision process.

Keywords

Belief revision AGM model Argumentation systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alchourrón, C., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. The Journal of Symbolic Logic, 50, 510–530.CrossRefGoogle Scholar
  2. 2.
    Alchourrón, C., & Makinson, D. (1985). On the logic of theory change: Safe contraction. Studia Logica, 44, 405–422.CrossRefGoogle Scholar
  3. 3.
    Baroni, P., & Giacomin, M. (2007). Comparing argumentation semantics with respect to skepticism. In 9th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, (ECSQARU 2007) (pp. 210–221). Tunisia: Hammamet.CrossRefGoogle Scholar
  4. 4.
    Baroni, P., & Giacomin, M. (2009). Semantics of abstract argument systems. In I. Rahwan, & G. R. Simari (Eds.), Argumentation in Artificial Intelligence, (pp. 24–44). Springer.Google Scholar
  5. 5.
    Baroni, P., & Giacomin, M. (2009). Skepticism relations for comparing argumentation semantics. International Journal Approximate Reasoning, 50(6), 854–866.CrossRefGoogle Scholar
  6. 6.
    Bench-Capon, T. J. M., & Dunne, P. E. (2007). Argumentation in artificial intelligence. Artificial Intelligence, 171(10–15), 619–641.CrossRefGoogle Scholar
  7. 7.
    Benferhat, S., Dubois, D., & Prade, H. (1993). Argumentative inference in uncertain and inconsistent knowledge bases. In D. Heckerman, & E. H. Mamdani (Eds.), Proceedings 9th Annual Conference on Uncertainty in Artificial Intelligence, UAI’1993 (pp. 411–419). Morgan Kaufmann.Google Scholar
  8. 8.
    Benferhat, S., Dubois, D., & Prade, H. (1995). How to infer from inconsistent beliefs without revising. In Proceedings of IJCAI’1995 (pp. 1449–1455).Google Scholar
  9. 9.
    Benferhat, S., Kaci, S., Berre, D. L., & Williams, M.-A. (2004). Weakening conflicting information for iterated revision and knowledge integration. Artificial Intelligence Journal, 153(1–2), 339–371.CrossRefGoogle Scholar
  10. 10.
    Besnard, P., & Hunter, A. (2001). A logic-based theory of deductive arguments. Artificial Intelligence, 128(1–2), 203–235.CrossRefGoogle Scholar
  11. 11.
    Besnard, P., & Hunter, A. (2009). Argumentation based on classical logic. In I. Rahwan, & G. R. Simari (Eds.), Argumentation in Artificial Intelligence, (pp. 133–152). Springer.Google Scholar
  12. 12.
    Boella, G., Costa Perera, C. d., Tettamanzi, A., & van der Torre, L. (2008). Dung argumentation and AGM belief revision. In 5th International Workshop on Argumentation in Multi-Agent Systems, ArgMAS’2008.Google Scholar
  13. 13.
    Boella, G., Costa Perera, C. d., Tettamanzi, A., & van der Torre, L. (2008). Making others believe what they want. Artificial Intelligence in Theory and Practice II (pp. 215–224).Google Scholar
  14. 14.
    Brewka, G. (1989). Belief revision in a framework for default reasoning. In A. Fuhrmann, & M. Morreau (Eds.), The logic of theory change. Lecture Notes in Computer Science (Vol. 465, pp. 206–222). Springer.Google Scholar
  15. 15.
    Brewka, G. (1989). Preferred subtheories: An extended logical framework for default reasoning. In Proceedings 11th Joint Conference on Artificial Intelligence, IJCAI 1989 (Vol. 2, pp. 1043–1048). San Mateo, California.Google Scholar
  16. 16.
    Cantwell, J. (1998). Resolving conflicting information. Journal of Logic, Language and Information, 7(2), 191–220.CrossRefGoogle Scholar
  17. 17.
    Cayrol, C., de Saint Cyr, F. D., & Lagasquie Schiex, M. C. (2008). Revision of an argumentation system. In Proceedings of the International Conference on Principles of Knowledge Representation and reasoning, KR 2008 (pp. 124–134).Google Scholar
  18. 18.
    Darwiche, A., & Pearl, J. (1997). On the logic of iterated belief revision. Artificial Intelligence, 89, 1–29.CrossRefGoogle Scholar
  19. 19.
    Delgrande, J., Dubois, D., & Lang, J. (2006). Iterated revision and prioritized merging. In Proceedings of KR 2006 (pp. 210–220). AAAI Press.Google Scholar
  20. 20.
    Delgrande, J., Schaub, T., Tompits, H., & Woltran, S. (2008). Belief revision of logic programs under answer set semantics. In Proceedings of the 11th International Conference on Principles of Knowledge Representation and Reasoning (pp. 411–421).Google Scholar
  21. 21.
    Delgrande, J. P., Schaub, T., Tompits, H., & Woltran, S. (2008). Belief revision of logic programs under answer set semantics. In G. Brewka, & J. Lang (Eds.), KR (pp. 411–421). AAAI Press.Google Scholar
  22. 22.
    Doyle, J. (1979). A truth maintenance system. Artificial Intelligence, 12, 231–272.CrossRefGoogle Scholar
  23. 23.
    Doyle, J. (1992). Reason maintenance and belief revision: Foundations versus coherence theories. In P. Gärdenfors (Ed.), Belief revision, (pp. 29–51). Cambridge University Press.Google Scholar
  24. 24.
    Dubois, D. (2006). Three scenarios for the revision of epistemic states. In Proceedings of NMR’2006.Google Scholar
  25. 25.
    Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321–358.CrossRefGoogle Scholar
  26. 26.
    Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77, 321–357.CrossRefGoogle Scholar
  27. 27.
    Falappa, M. A., Fermé, E. L., & Kern-Isberner, G. (2006). On the logic of theory change: Relations between incision and selection functions. In Proceedings of ECAI-2006 (pp. 402–406).Google Scholar
  28. 28.
    Falappa, M. A., Kern-Isberner, G., Reis, M. D. L., & Simari, G. R. (2011). Prioritized and non-prioritized multiple change on belief bases. The Journal of Philosophical Logic. doi:10.1007/s10992-011-9200-8
  29. 29.
    Falappa, M. A., Kern-Isberner, G., & Simari, G. R. (2002). Belief revision, explanations and defeasible reasoning. Artificial Intelligence Journal, 141, 1–28.CrossRefGoogle Scholar
  30. 30.
    Falappa, M. A., Kern-Isberner, G., & Simari, G. R. (2009) Argumentation in Artificial Intelligence. In I. Rahwan, & G. R. Simari (Eds.), Chapt. Belief Revision and Argumentation Theory (pp. 341–360). Springer.Google Scholar
  31. 31.
    Fuhrmann, A., & Hansson, S. O. (1994). A survey of multiple contractions. The Journal of Logic, Language and Information, 3, 39–76.CrossRefGoogle Scholar
  32. 32.
    García, A. J., & Simari, G. R. (2004). Defeasible logic programming: An argumentative approach. Theory and Practice of Logic Programming, 4(1), 95–138.CrossRefGoogle Scholar
  33. 33.
    Gärdenfors, P. (1988). Knowledge in flux: Modelling the dynamics of epistemic states. The MIT Press, Bradford Books: Cambridge.Google Scholar
  34. 34.
    Gärdenfors, P. (1990). The dynamics of belief systems: Foundations vs. coherence theories. Revue Internationale of Philosophie, 44, 24–46.Google Scholar
  35. 35.
    Gärdenfors, P., & Makinson, D. (1988). Revisions of knowledge systems using epistemic entrenchment. 2nd conference on theoretical aspects of reasoning about knowledge (pp. 83–95).Google Scholar
  36. 36.
    Gómez Lucero, M. J., Chesñevar, C. I., & Simari, G. R. (2009). Modelling argument accrual in possibilistic defeasible logic programming. In Proceedings of ECSQARU’2009 (pp. 131–143).Google Scholar
  37. 37.
    Gómez Lucero, M. J., Chesñevar, C. I., & Simari, G. R. (2009). On the accrual of arguments in defeasible logic programming. In Proceedings of IJCAI’2009 (pp. 804–809).Google Scholar
  38. 38.
    Grove, A. (1988). Two modellings for theory change. The Journal of Philosophical Logic, 17, 157–170.CrossRefGoogle Scholar
  39. 39.
    Hansson, S. O. (1993). Reversing the levi identity. The Journal of Philosophical Logic, 22, 637–669.CrossRefGoogle Scholar
  40. 40.
    Hansson, S. O. (1994). Kernel contraction. The Journal of Symbolic Logic, 59, 845–859.CrossRefGoogle Scholar
  41. 41.
    Hansson, S. O. (1999). A textbook of belief dymanics: Theory change and database updating. Kluwer Academic Publishers.Google Scholar
  42. 42.
    Kern-Isberner, G. (1999). Postulates for conditional belief revision. In Proceedings of 16th International Joint Conference on Artificial Intelligence, IJCAI 1999 (pp. 186–191). Morgan Kaufmann.Google Scholar
  43. 43.
    Kern-Isberner, G. (2004). A thorough axiomatization of a principle of conditional preservation in belief revision. Annals of Mathematics and Artificial Intelligence, 40(1–2), 127–164.CrossRefGoogle Scholar
  44. 44.
    Kern-Isberner, G. (2008). Linking iterated belief change operations to nonmonotonic reasoning. In G. Brewka, & J. Lang (Eds.), Proceedings of 11th International Conference on Knowledge Representation and Reasoning, KR 2008 (pp. 166–176). Menlo Park: AAAI Press.Google Scholar
  45. 45.
    Levi, I. (1977). Subjunctives, dispositions, and chances. Synth̀ese, 34, 423–455.CrossRefGoogle Scholar
  46. 46.
    Lindström, S. & Rabinowicz, W. (1989). Epistemic entrenchment with incomparabilities and relational belief revision. In In A. Fuhrmann, & M. Morreau (eds.), The logic of theory change. Lecture Notes in Computer Science (pp. 93–126). SpringerGoogle Scholar
  47. 47.
    Makinson, D., & Gärdenfors, P. (1991). Relations between the logic of theory change and nonmonotonic logic. Lecture Notes in Computer Science, 465, 183–205.CrossRefGoogle Scholar
  48. 48.
    Moguillansky, M. O., Rotstein, N. D., Falappa, M. A., García, A. J., & Simari, G. R. (2008). Argument theory change applied to defeasible logic programming. In Proceedings of the 23rd Conference on Artificial Intelligence, AAAI 2008 (pp. 132–137).Google Scholar
  49. 49.
    Moguillansky, M. O., Rotstein, N. D., Falappa, M. A., García, A. J., & Simari, G. R. (2011). Argument Theory change applied to defeasible logic programming. Theory and Practice of Logic Programming (TPLP), (in press)Google Scholar
  50. 50.
    Paglieri, F., & Castelfranchi, C. (2006). The toulmin test: Framing argumentation within belief revision theories (pp. 359–377). Berlin: Springer.Google Scholar
  51. 51.
    Peppas, P. (2004). The limit assumption and multiple revision. Journal of Logic and Computation, 14(3), 355–371.CrossRefGoogle Scholar
  52. 52.
    Pollock, J. L. (1994). Justification and defeat. Artificial Intelligence, 67, 377–407.CrossRefGoogle Scholar
  53. 53.
    Pollock, J. L., & Gillies, A. S. (2000). Belief revision and epistemology. Synthese, 122(1–2), 69–92.CrossRefGoogle Scholar
  54. 54.
    Prakken, H. (1993). Logical tools for modelling legal argument. Ph.D. thesis, Vrije Universiteit, Amsterdan.Google Scholar
  55. 55.
    Rahwan, I., & Simari, G. R. (2009). Argumentation in artificial intelligence. Springer.Google Scholar
  56. 56.
    Rotstein, N. D., Moguillansky, M. O., Falappa, M. A., García, A. J., & Simari, G. R. (2008). Argument theory change: Revision upon warrant. In Proceedings of the Computational Models of Argument, COMMA’2008 (pp. 336–347).Google Scholar
  57. 57.
    Rott, H. (1992). Preferential belief change using generalized epistemic entrenchment. The Journal of Logic, Language and Information, 1, 45–78.Google Scholar
  58. 58.
    Simari, G. R., & Loui, R. P. (1992). A mathematical treatment of defeasible reasoning and its implementation. Artificial Intelligence, 53, 125–157.CrossRefGoogle Scholar
  59. 59.
    Tamminga, A. (2004). Expansion and contraction of finite states. Studia Logica, 76(3), 427–442.CrossRefGoogle Scholar
  60. 60.
    Verheij, B. (1995). Accrual of arguments in defeasible argumentation. In Proceedings of the 2nd Dutch/German Workshop on Nonmonotonic Reasoning, (pp. 217–224). Utrecht.Google Scholar
  61. 61.
    Williams, M.-A. (1994). Transmutations of knowledge systems. In J. Doyle, E. Sandewall, & P. Torasso (Eds.), Proceedings of the 4th International Conference on Principles of Knowledge Representation and Reasoning (KR 1994), (pp. 619–629). Bonn, Germany.Google Scholar
  62. 62.
    Williams, M.-A. (1996). Towards a practical approach to belief revision: Reason-based change. In L. C. Aiello, J. Doyle, & S. C. Shapiro (Eds.), Proceedings of the 5th International Conference on Principles of Knowledge Representation and Reasoning (KR 1996), (pp. 412–420). Cambridge, MA.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Marcelo Alejandro Falappa
    • 1
    • 2
  • Alejandro Javier García
    • 1
    • 2
  • Gabriele Kern-Isberner
    • 3
  • Guillermo Ricardo Simari
    • 1
  1. 1.Artificial Intelligence Research and Development Laboratory, Department of Computer Science and EngineeringUniversidad Nacional del SurBuenos AiresArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Technische Universitaet Dortmund, Department of Computer ScienceUniversity of DortmundDortmundGermany

Personalised recommendations