Journal of Philosophical Logic

, Volume 42, Issue 1, pp 137–160 | Cite as

Vagueness: A Conceptual Spaces Approach

  • Igor Douven
  • Lieven Decock
  • Richard Dietz
  • Paul Égré
Open Access


The conceptual spaces approach has recently emerged as a novel account of concepts. Its guiding idea is that concepts can be represented geometrically, by means of metrical spaces. While it is generally recognized that many of our concepts are vague, the question of how to model vagueness in the conceptual spaces approach has not been addressed so far, even though the answer is far from straightforward. The present paper aims to fill this lacuna.


Vagueness Conceptual spaces Voronoi diagrams Gardenfors 


  1. 1.
    Berlin, B., & Kay, P. (1969/1999). Basic color terms. Stanford CA: CSLI Publications.Google Scholar
  2. 2.
    Clark, A. (1993). Sensory qualities. Oxford: Clarendon.Google Scholar
  3. 3.
    Cook, R. (2002). Vagueness and mathematical precision. Mind, 111, 225–247.CrossRefGoogle Scholar
  4. 4.
    Fairchild, M. D. (1998). Color appearance models. Reading, MA: Addison–Wesley.Google Scholar
  5. 5.
    Gaifman, H. (2010). Vagueness, tolerance and contextual logic. Synthese, 174, 5–46.CrossRefGoogle Scholar
  6. 6.
    Gärdenfors, P. (2000). Conceptual spaces. Cambridge, MA: MIT Press.Google Scholar
  7. 7.
    Gärdenfors, P. (2007). Representing actions and functional properties in conceptual spaces. In T. Ziemke, J. Zlatev, & R. M. Frank (Eds.), Body, language and mind (Vol. 1, pp. 167–195). Berlin: De Gruyter.Google Scholar
  8. 8.
    Gavrilova, M., & Rokne, J. (1999). Swap conditions for dynamic Voronoi diagrams for circles and line segments. Computer Aided Geometric Design, 16, 89–106.CrossRefGoogle Scholar
  9. 9.
    Hardin, C. L. (1988). Color for philosophers. Indianapolis, IN: Hackett.Google Scholar
  10. 10.
    Kuehni, R. (2003). Color space and its divisions. New York: Wiley.CrossRefGoogle Scholar
  11. 11.
    Okabe, A., Boots, B., Sugihara, K., & Chiu, S. N. (2000). Spatial tessellations (2nd ed.). New York: Wiley.CrossRefGoogle Scholar
  12. 12.
    Raffman, D. (1994). Vagueness without paradox. Philosophical Review, 103, 41–74.CrossRefGoogle Scholar
  13. 13.
    Roos, T. (1993). Voronoi diagrams over dynamic scenes. Discrete Applied Mathematics, 43, 243–259.CrossRefGoogle Scholar
  14. 14.
    Roos, T., & Noltemeier, H. (1991). Dynamic Voronoi diagrams in motion planning. In H. Bieri, & H. Noltemeier (Eds.), Lecture notes in computer science (Vol. 553, pp. 227–236). New York: Springer.Google Scholar
  15. 15.
    Rosch, E. (1975). Cognitive representations of semantic categories. Journal of Experimental Psychology: General, 104, 192–232.CrossRefGoogle Scholar
  16. 16.
    Sainsbury, M. (1990). Concepts without boundaries. Inaugural Lecture, Department of Philosophy, King’s College, London; Reprinted In R. Keefe, & P. Smith (Eds.), Vagueness. A reader (pp. 251–264). Cambridge, MA: MIT Press, 1996.Google Scholar
  17. 17.
    Sainsbury, M. (1991). Is there higher-order vagueness? Philosophical Quarterly, 41, 167–182.CrossRefGoogle Scholar
  18. 18.
    Wright, C. (2010). The illusion of higher-order vagueness. In R. Dietz, & S. Moruzzi (Eds.), Cuts and clouds: Vagueness, its nature and its logic (pp. 523–549). Oxford: Oxford University Press.CrossRefGoogle Scholar
  19. 19.
    Wyszecki, G., & Stiles, W. S. (2000). Color science. New York: Wiley.Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Igor Douven
    • 1
  • Lieven Decock
    • 2
  • Richard Dietz
    • 3
  • Paul Égré
    • 4
  1. 1.Faculty of PhilosophyUniversity of GroningenGroningenThe Netherlands
  2. 2.Faculty of PhilosophyVU University AmsterdamAmsterdamThe Netherlands
  3. 3.Department of PhilosophyUniversity of TokyoTokyoJapan
  4. 4.Institut Jean–Nicod (CNRS)ParisFrance

Personalised recommendations