Journal of Philosophical Logic

, Volume 41, Issue 1, pp 237–271

Conditional Ranking Revision

Iterated Revision with Sets of Conditionals
Article

Abstract

In the context of a general framework for belief dynamics which interprets revision as doxastic constraint satisfaction, we discuss a proposal for revising quasi-probabilistic belief measures with finite sets of graded conditionals. The belief states are ranking measures with divisible values (generalizing Spohn’s epistemology), and the conditionals are interpreted as ranking constraints. The approach is inspired by the minimal information paradigm and based on the principle-guided canonical construction of a ranking model of the input conditionals. This is achieved by extending techniques known from conditional default reasoning. We give an overview of how it handles different principles for conditional and parallel revision and compare it with similar accounts.

Keywords

Belief revision Ranking measures Conditionals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alchourron, C. E., Gaerdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50(2), 510–530.CrossRefGoogle Scholar
  2. 2.
    Benferhat, S., Saffiotti, A., & Smets, P. (2000). Belief functions and default reasoning. Artificial Intelligence, 122(1–2), 1–69.CrossRefGoogle Scholar
  3. 3.
    Booth, R., & Meyer, T. (2006). Admissible and restrained revision. Journal of Artificial Intelligence Research, 26, 127–151.Google Scholar
  4. 4.
    Booth, R., & Meyer, T. (2007). On the dynamics of total preorders: Revising abstract interval orders. In ECSQARU ’07, LNCS 4724 (pp. 42–53). Springer.Google Scholar
  5. 5.
    Booth, R., Meyer, T. A., & Wong, K. (2006). A bad day surfing is better than a good day working: How to revise a total preorder. In KR ’06 (pp. 230–238). AAAI Press.Google Scholar
  6. 6.
    Bourne, R. A., & Parsons, S. (2003). Extending the maximum entropy approach to variable-strength defaults. Annals of Mathematics and Artificial Intelligence, 39(1–2), 123–146.CrossRefGoogle Scholar
  7. 7.
    Boutilier, C. (1993). Revision sequences and nested conditionals. In IJCAI ’93 (pp. 519–525). Morgan Kaufmann.Google Scholar
  8. 8.
    Boutilier, C. (1996). Iterated revision and minimal revision of conditional beliefs. Journal of Philosophical Logic, 25, 262–304.CrossRefGoogle Scholar
  9. 9.
    Boutilier, C., & Goldszmidt, M. (1993). Revision by conditional beliefs. In AAAI ’93 (pp. 649–654). MIT Press.Google Scholar
  10. 10.
    Chopra, S., Ghose, A., & Meyer, T. (2003). Non-prioritized ranked belief change. Journal of Philosophical Logic, 32(4), 417–443.CrossRefGoogle Scholar
  11. 11.
    Darwiche, A., & Pearl, J. (1997). On the logic of iterated belief revision. Artificial Intelligence, 89(1–2), 1–29.CrossRefGoogle Scholar
  12. 12.
    Delgrande, J. P., & Jin, Y. (2008). Parallel belief revision. In AAAI ’08 (pp. 430–435). AAAI Press.Google Scholar
  13. 13.
    Delgrande, J., Dubois, D., & Lang, J. (2006). Iterated revision as prioritized merging. In KR ’06 (pp. 210–220). AAAI Press.Google Scholar
  14. 14.
    Diaye, M.-A., & Schoch, D. (2009). Preference as fulfillment of desires. Journal of Mathematical Psychology, 53(2), 76–85.CrossRefGoogle Scholar
  15. 15.
    Dubois, D., & Prade, H. (1998). Possibility theory: Qualitative and quantitative aspects. In P. Smets (Eds.), Quantified representation of uncertainty and imprecision, Handbook on defeasible reasoning and uncertainty management systems (Vol. 1, pp. 169–226). Dordrecht: Kluwer.Google Scholar
  16. 16.
    Friedman, N., & Halpern, J. (2001). Plausibility measures and default reasoning. Journal of the ACM, 48(4), 648–685.CrossRefGoogle Scholar
  17. 17.
    Goldszmidt, M., Morris, P., & Pearl, J. (1993). A maximum entropy approach to nonmonotonic reasoning. IEEE Transactions of Pattern Analysis and Machine Intelligence, 15, 220–232.CrossRefGoogle Scholar
  18. 18.
    Hansson, S. O. (1991). Belief contraction without recovery. Studia Logica, 50(2), 251–260.CrossRefGoogle Scholar
  19. 19.
    Hild, M., & Spohn, W. (2008). Measurement of ranks and the laws of iterated contraction. Artificial Intelligence, 172(10), 1195–1218.CrossRefGoogle Scholar
  20. 20.
    Huber, F. (2006). Ranking functions and rankings on languages. Artificial Intelligence, 170(4–5), 462–471.CrossRefGoogle Scholar
  21. 21.
    Jin, Y., & Thielscher, M. (2007). Iterated belief revision, revised. Artificial Intelligence, 171(1), 1–18.CrossRefGoogle Scholar
  22. 22.
    Kern-Isberner, G. (1999). Postulates for conditional belief revision. In IJCAI ’99 (pp. 186–191). Morgan Kaufmann.Google Scholar
  23. 23.
    Kern-Isberner, G. (2002). Handling conditionals adequately in uncertain reasoning and belief revision. Journal of Applied Non-Classical Logics, 12(2), 215–237.CrossRefGoogle Scholar
  24. 24.
    Kern-Isberner, G. (2004). A thorough axiomatization of a principle of conditional preservation in belief revision. Annals of Mathematics and Artificial Intelligence, 40(1–2), 127–164.CrossRefGoogle Scholar
  25. 25.
    Kern-Isberner, G. (2008). Linking iterated belief change operations to nonmonotonic reasoning. In KR ’08 (pp. 166–176). AAAI Press.Google Scholar
  26. 26.
    Kraus, S., Lehmann, D., & Magidor, M. (1990). Nonmonotonic reasoning, preferential models, and cumulative logics. Artificial Intelligence, 44(1–2), 167–207.CrossRefGoogle Scholar
  27. 27.
    Lang, J., van der Torre, L., & Weydert, E. (2002). Utilitarian desires. Autonomous Agents and Multi-Agent Systems, 5(3), 329–363.CrossRefGoogle Scholar
  28. 28.
    Lehmann, D. J. (1995). Belief revision, revised. In IJCAI ’95 (pp. 1534–1540). Morgan Kaufmann.Google Scholar
  29. 29.
    Nayak, A. C. (1994). Iterated belief change based on epistemic entrenchment. Erkenntnis, 41, 353–390.CrossRefGoogle Scholar
  30. 30.
    Nayak, A. C., Pagnucco, M., & Peppas, P. (2003). Dynamic belief revision operators. Artificial Intelligence, 146(2), 193–228.CrossRefGoogle Scholar
  31. 31.
    Paris, J. (1994). The uncertain reasoner’s companion. Cambridge: Cambridge University Press.Google Scholar
  32. 32.
    Pearl, J. (1990). System Z: A natural ordering of defaults with tractable applications to nonmonotonic reasoning. In TARK 3 (pp. 121–135). Morgan Kaufmann.Google Scholar
  33. 33.
    Rott, H. (2001). Change, choice and inference: A study of belief revision and nonmonotonic reasoning. Oxford Logic Guides (Vol. 42). Oxford: Oxford University Press.Google Scholar
  34. 34.
    Rott, H. (2009). Shifting priorities: Simple representations for twenty-seven iterated theory change operators. In D. Makinson, J. Malinowski, & H. Wansing (Eds.), Towards mathematical philosophy (pp. 269–296). New York: Springer.CrossRefGoogle Scholar
  35. 35.
    Shore, J. E., & Johnson, R. W. (1980). Axiomatic derivation of the principle of cross-entropy minimization. IEEE Transactions on Information Theory, IT-26(1), 26–37.CrossRefGoogle Scholar
  36. 36.
    Spohn, W. (1988). Ordinal conditional functions: A dynamic theory of epistemic states. In W. L. Harper & B. Skyrms (Eds.), Causation in decision, belief change, and statistics (pp. 105–134). Dordrecht: Kluwer.Google Scholar
  37. 37.
    Spohn, W. (1990). A general non-probabilistic theory of inductive reasoning. In R. D. Shachter, et al. (Eds.), Uncertainty in artificial intelligence (Vol. 4, pp. 149–158). North-Holland, Amsterdam.Google Scholar
  38. 38.
    Spohn, W. (2009). A survey of ranking theory. In F. Huber & C. Schmidt-Petri (Eds.), Degrees of belief. An anthology (pp. 185–228). Oxford: Oxford University Press.CrossRefGoogle Scholar
  39. 39.
    Weydert, E. (1994). General belief measures. In UAI ’94 (pp. 575–582). Morgan Kaufmann.Google Scholar
  40. 40.
    Weydert, E. (1995). Default entailment: A preferential construction semantics for defeasible inference. In KI ’95, LNCS 981 (pp. 173–184). Springer.Google Scholar
  41. 41.
    Weydert, E. (1995). Defaults and infinitesimals. Defeasible inference by non-archimedean entropy maximization. In UAI ’95 (pp. 540–547). Morgan Kaufmann.Google Scholar
  42. 42.
    Weydert, E. (1996). System J – Revision entailment. In FAPR ’96, LNCS 1085 (pp. 637–649). Springer.Google Scholar
  43. 43.
    Weydert, E. (1998). System JZ — How to build a canonical ranking model of a default knowledge base. In KR ’98 (pp. 190–201). Morgan Kaufmann.Google Scholar
  44. 44.
    Weydert, E. (1999). JZBR — Iterated belief change for conditional ranking constraints. Spinning ideas: Electronic essays dedicated to Peter Gaerdenfors on his 50th birthday. http://www.lucs.lu.se/spinning/categories/dynamics/Weydert/index.html.
  45. 45.
    Weydert, E. (2003). System JLZ — Rational default reasoning by minimal ranking constructions. Journal of Applied Logic (Elsevier), 1(3–4), 273–308.CrossRefGoogle Scholar
  46. 46.
    Weydert, E. (2005). Projective default epistemology — a first look. In Conditionals, information, and inference (Postproceedings of WCII 2002, Hagen, Germany), LNCS 3301 (pp. 65–85). New York: Springer.Google Scholar
  47. 47.
    Williams, M.-A. (1995). Iterated theory-based change. In IJCAI ’95 (pp. 1541–1550). Morgan Kaufmann.Google Scholar
  48. 48.
    Zhang, D. (2004). Properties of iterated multiple belief revision. In LPNMR ’04, LNCS 2923 (pp. 314–325). Springer.Google Scholar
  49. 49.
    Zhang, D., & Foo, N. (2001). Infinitary belief revision. Journal of Philosophical Logic, 30(6), 525–570.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Individual and Collective Reasoning Group (ICR), Computer Science and Communications Research Unit (CSC)University of LuxembourgLuxembourgLuxembourg

Personalised recommendations