Journal of Philosophical Logic

, Volume 41, Issue 1, pp 273–286 | Cite as

Impossibility Results for Infinite-Electorate Abstract Aggregation Rules

  • Frederik Herzberg
  • Daniel Eckert


Following Lauwers and Van Liedekerke (1995), this paper explores in a model-theoretic framework the relation between Arrovian aggregation rules and ultraproducts, in order to investigate a source of impossibility results for the case of an infinite number of individuals and an aggregation rule based on a free ultrafilter of decisive coalitions.


Arrow-type preference aggregation Judgment aggregation Model theory First-order predicate logic Filter Ultrafilter Reduced product Ultraproduct Existential quantifier 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arrow, K. J. (1963). Social choice and individual values (2nd ed.). Cowles Commission Monograph 12. New York, NY: Wiley.Google Scholar
  2. 2.
    Bell, J. L., & Slomson, A. B. (1969). Models and ultraproducts. An introduction. Amsterdam: North-Holland.Google Scholar
  3. 3.
    Campbell, D. E. (1990). Intergenerational social choice without the Pareto principle. Journal of Economic Theory, 50(2), 414–423.CrossRefGoogle Scholar
  4. 4.
    Dietrich, F., & List, C. (2007). Arrow’s theorem in judgment aggregation. Social Choice and Welfare, 29(1), 19–33.CrossRefGoogle Scholar
  5. 5.
    Dietrich, F., & Mongin Ph. (2007). The premiss-based approach to logical aggregation. Les Cahiers de Recherche 886, HEC ParisGoogle Scholar
  6. 6.
    Dietrich, F., & Mongin, Ph. (2010). The premiss-based approach to judgment aggregation. Journal of Economic Theory, 145(2), 562–582.CrossRefGoogle Scholar
  7. 7.
    Fishburn, P. C. (1970). Arrow’s impossibility theorem: Concise proof and infinite voters. Journal of Economic Theory, 2(1), 103–106.CrossRefGoogle Scholar
  8. 8.
    Grandi, U., & Endriss, U. (2009). First-order logic formalisation of Arrow’s theorem. In Proceedings of the 2nd international workshop on logic, rationality and interaction (LORI-2009). Lecture notes in computer science (Vol. 5834, pp. 133–146). Berlin: SpringerGoogle Scholar
  9. 9.
    Halpern, J. D., & Levy, A. (1971). The Boolean prime ideal theorem does not imply the axiom of choice. In Axiomatic set theory. Proceedings of symposia in pure mathematics. XIII. Part 1 (pp. 83–134). Providence, RI: American Mathematical Society.Google Scholar
  10. 10.
    Hansson, B. (1976). The existence of group preference functions. Public Choice, 38(1), 98.Google Scholar
  11. 11.
    Herzberg, F. S. (2010). Social choice of convex risk measures through Arrovian aggregation of variational preferences. IMW Working Paper 432. Institute of Mathematical Economics, Bielefeld University.Google Scholar
  12. 12.
    Herzberg, F. S., & Eckert, D. (2009). General aggregation problems and social structure: A model-theoretic generalisation of the Kirman–Sondermann correspondence. IMW Working Paper 424. Institute of Mathematical Economics, Bielefeld University.Google Scholar
  13. 13.
    Herzberg, F. S., Lauwers, L., Van Liedekerke, L., & Fianu, E. S. (2010). Addendum to L. Lauwers and L. Van Liedekerke, “Ultraproducts and aggregation”. Journal of Mathematical Economics, 46(2), 277–278.CrossRefGoogle Scholar
  14. 14.
    Hodges, W. (1985). Building models by games. London mathematical society student texts (Vol. 2). Cambridge: Cambridge University Press.Google Scholar
  15. 15.
    Kirman, A. P., & Sondermann, D. (1972). Arrow’s theorem, many agents, and invisible dictators. Journal of Economic Theory, 5(2), 267–277.CrossRefGoogle Scholar
  16. 16.
    Klamler, C., & Eckert, D. (2009). A simple ultrafilter proof for an impossibility theorem in judgment aggregation. Economics Bulletin, 29(1), 320–328.Google Scholar
  17. 17.
    Lauwers, L., & Van Liedekerke, L. (1995). Ultraproducts and aggregation. Journal of Mathematical Economics, 24(3), 217–237.CrossRefGoogle Scholar
  18. 18.
    List, C., & Puppe, C. (2009). Judgment aggregation: A survey. In P. Anand, P. K. Pattanaik, & C. Puppe (Eds.), The handbook of rational and social choice: An overview of new foundations and applications (pp. 457–482). Oxford: Oxford University Press.CrossRefGoogle Scholar
  19. 19.
    Rubinstein, A. (1984). The single profile analogues to multi profile theorems: Mathematical logic’s approach. International Economic Review, 25(3), 719–730.CrossRefGoogle Scholar
  20. 20.
    Rubinstein, A., & Fishburn P. (1986). Algebraic aggregation theory. Journal of Economic Theory, 38(1), 63–77.CrossRefGoogle Scholar
  21. 21.
    Suppes, P. (2005). The pre-history of Kenneth Arrow’s social choice and individual values. Social Choice and Welfare, 25(2–3), 319–326.CrossRefGoogle Scholar
  22. 22.
    Wilson, R. (1975). On the theory of aggregation. Journal of Economic Theory, 10(1), 89–99.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Institut für Mathematische WirtschaftsforschungUniversität BielefeldBielefeldGermany
  3. 3.Institut für FinanzwissenschaftKarl-Franzens-Universität GrazGrazAustria

Personalised recommendations