Journal of Philosophical Logic

, Volume 41, Issue 1, pp 201–236 | Cite as

Belief Change in Branching Time: AGM-consistency and Iterated Revision



We study belief change in the branching-time structures introduced in Bonanno (Artif Intell 171:144–160, 2007). First, we identify a property of branching-time frames that is equivalent (when the set of states is finite) to AGM-consistency, which is defined as follows. A frame is AGM-consistent if the partial belief revision function associated with an arbitrary state-instant pair and an arbitrary model based on that frame can be extended to a full belief revision function that satisfies the AGM postulates. Second, we provide a set of modal axioms that characterize the class of AGM-consistent frames within the modal logic introduced in Bonanno (Artif Intell 171:144–160, 2007). Third, we introduce a generalization of AGM belief revision functions that allows a clear statement of principles of iterated belief revision and discuss iterated revision both semantically and syntactically.


Branching time Belief revision Information Iterated belief revision Plausibility ordering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alchourrón, C., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. The Journal of Symbolic Logic, 50, 510–530.CrossRefGoogle Scholar
  2. 2.
    Baltag, A., & Moss, L. S. (2004). Logics for epistemic programs. Synthese, 139, 165–224.CrossRefGoogle Scholar
  3. 3.
    Board, O. (2004). Dynamic interactive epistemology. Games and Economic Behavior, 49, 49–80.CrossRefGoogle Scholar
  4. 4.
    Bonanno, G. (2007). Axiomatic characterization of the AGM theory of belief revision in a temporal logic. Artificial Intelligence, 171, 144–160.CrossRefGoogle Scholar
  5. 5.
    Bonanno, G. (2008). Belief revision in a temporal framework. In K. R. Apt, & R. van Rooij (Eds.), New perspectives on games and interaction. Texts in logic and games series (Vol. 4, pp. 45–79). Amsterdam University Press.Google Scholar
  6. 6.
    Bonanno, G. (2009). Rational choice and AGM belief revision. Artificial Intelligence, 173, 1194–1203.CrossRefGoogle Scholar
  7. 7.
    Booth, R., & Meyer, T. (2006). Admissible and restrained revision. Journal of Artificial Intelligence Research, 26, 127–151.Google Scholar
  8. 8.
    Boutilier, C. (1996). Iterated revision and minimal change of conditional beliefs. Journal of Philosophical Logic, 25, 263–305.CrossRefGoogle Scholar
  9. 9.
    Darwiche, A., & Pearl, J. (1997). On the logic of iterated belief revision. Artificial Intelligence, 89, 1–29.CrossRefGoogle Scholar
  10. 10.
    de Rijke, M. (1994). Meeting some neighbours: A dynamic modal logic meets theories of change and knowledge representation. In J. van Eijck, & A. Visser (Eds.), Logic and information flow (pp. 170–196). MIT Press.Google Scholar
  11. 11.
    Fagin, R., Halpern, J., Moses, Y., & Vardi, M. (1995). Reasoning about knowledge. MIT Press.Google Scholar
  12. 12.
    Friedman, N., & Halpern, J. (1999). Belief revision: A critique. Journal of Logic, Language, and Information, 8, 401–420.CrossRefGoogle Scholar
  13. 13.
    Fuhrmann, A. (1991). On the modal logic of theory change. In A. Fuhrmann (Ed.), The logic of theory change. Lecture notes in artificial intelligence (No. 465, pp. 259–281). Springer-Verlag.Google Scholar
  14. 14.
    Gärdenfors, P. (1988). Knowledge in flux: Modeling the dynamics of epistemic states. MIT Press.Google Scholar
  15. 15.
    Hansson, B. (1968). Choice structures and preference relations. Synthese, 18, 443–458.CrossRefGoogle Scholar
  16. 16.
    Hintikka, J. (1962). Knowledge and belief. Cornell University Press.Google Scholar
  17. 17.
    Humberstone, L. (1987). The modal logic of ‘all and only’. Notre Dame Journal of Formal Logic, 28, 177–188.CrossRefGoogle Scholar
  18. 18.
    Jin, Y., & Thielscher, M. (2007). Iterated belief revision, revised. Artificial Intelligence, 171, 1–18.CrossRefGoogle Scholar
  19. 19.
    Katsuno, H., & Mendelzon, A. O. (1992). On the difference between updating a knowledge base and revising it. In P. Gärdenfors (Ed.), Belief revision (pp. 183–203). Cambridge University Press.Google Scholar
  20. 20.
    Kripke, S. (1963). A semantical analysis of modal logic I: Normal propositional calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9, 67–96.CrossRefGoogle Scholar
  21. 21.
    Leitgeb, H., & Segerberg, K. (2007). Dynamic doxastic logic: Why, how and where to? Synthese, 155, 167–190.CrossRefGoogle Scholar
  22. 22.
    Levesque, H. (1990). All I know: A study in autoepistemic logic. Artificial Intelligence, 5, 263–309.CrossRefGoogle Scholar
  23. 23.
    Nayak, A., Pagnucco, M., & Peppas, P. (2003). Dynamic belief revision operators. Artificial Intelligence, 146, 193–228.CrossRefGoogle Scholar
  24. 24.
    Parikh, R., & Ramanujam, R. (2003). A knowledge based semantics of messages. Journal of Logic, Language, and Information, 12, 453–467.CrossRefGoogle Scholar
  25. 25.
    Plaza, J. (1989). Logics of public communications. In M. L. Emrich, M. S. Pfeifer, M. Hadzikadic, & Z. W. Ras (Eds.), Proceedings of the fourth international symposium on methodologies for intelligent systems (pp. 201–216). Oak Ridge National Laboratory. Reprinted in Synthese, 158, 165–179 (2007).Google Scholar
  26. 26.
    Rabinowicz, W. (1995). Stable revision, or is Preservation worth preserving? In A. Fuhrmann, & H. Rott (Eds.), Logic, action and information: Essays on logic in philosophy and artificial intelligence (pp. 101–128). Berlin.Google Scholar
  27. 27.
    Rott, H. (1999). Coherence and conservatism in the dynamics of belief. Erkenntnis, 50, 387–412.CrossRefGoogle Scholar
  28. 28.
    Segerberg, K. (1995). Belief revision from the point of view of doxastic logic. Bulletin of the IGPL, 3, 535–553.CrossRefGoogle Scholar
  29. 29.
    Segerberg, K. (1999). Two traditions in the logic of belief: Bringing them together. In H. J. Ohlbach, & U. Reyle (Eds.), Logic, language and reasoning (pp. 135–147). Kluwer Academic Publishers.Google Scholar
  30. 30.
    Stalnaker, R. (2009). Iterated belief revision. Erkenntnis, 70, 189–209.CrossRefGoogle Scholar
  31. 31.
    van Benthem, J. (2007). Dynamic logics for belief revision. Journal of Applied Non-Classical Logics, 17, 129–155.CrossRefGoogle Scholar
  32. 32.
    van Benthem, J., & Dégremont, C. (2010). Multi-agent belief dynamics: Bridges between dynamic doxastic and doxastic temporal logics. In G. Bonanno, W. van der Hoek, & B. Lö we (Eds.), Logic and the foundations of the theory of games and decisions (LOFT8) (pp. 153–175). Springer.Google Scholar
  33. 33.
    van Benthem J., Gerbrandy, J., Hoshi, T., & Pacuit, E. (2009). Merging frameworks for interaction. Journal of Philosophical Logic, 38, 491–526.CrossRefGoogle Scholar
  34. 34.
    van Benthem, J., & Pacuit, E. (2006). The tree of knowledge in action: Towards a common perspective. In G. Governatori, I. Hodkinson, & Y. Venema (Eds.), Advances in modal logic (Vol. 6, pp. 87–106). College Publications.Google Scholar
  35. 35.
    van Ditmarsch, H. (2005). Belief change and dynamic logic. In J. Delgrande, J. Lang, H. Rott, & J.-M. Tallon (Eds.), Belief change in rational agents. (Electronic) Proceedings of Dagstuhl Seminar 05321, IBFI. Germany: Schloss Dagstuhl. Accessed 19 May 2011.
  36. 36.
    van Ditmarsch, H. (2005). Prolegomena to dynamic logic for belief revision. Synthese, 147, 229–275.CrossRefGoogle Scholar
  37. 37.
    van Ditmarsch, H., van der Hoek, W., & Kooi, B. (2008). Dynamic epistemic logic. Springer.Google Scholar
  38. 38.
    Zvesper, J. (2007). How to keep on changing your mind, dynamically. In J. van Benthem, S. Ju, & F. Veltman (Eds.), A meeting of the minds. Proceedings of the workshop on logic, rationality and interaction. Texts in computer science (Vol. 8, pp. 291–306). College Publications.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of EconomicsUniversity of CaliforniaDavisUSA

Personalised recommendations