Advertisement

Journal of Philosophical Logic

, Volume 41, Issue 1, pp 1–5 | Cite as

Guest Editors’ Introduction

Article

References

  1. 1.
    Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50, 510–530.CrossRefGoogle Scholar
  2. 2.
    Bonanno, G. (2007). Axiomatic characterization of the AGM theory of belief revision in a temporal logic. Artificial Intelligence, 171(2–3), 144–160.CrossRefGoogle Scholar
  3. 3.
    Cantwell, J. (1997). On the logic of small changes in hypertheories. Theoria, 63, 54–89.CrossRefGoogle Scholar
  4. 4.
    Darwiche, A., & Pearl, J. (1997). On the logic of iterated belief revision. Artificial Intelligence, 89, 1–29.CrossRefGoogle Scholar
  5. 5.
    Delgrande, J. P. & Jin, Y. (2008). Parallel belief revision. In D. Fox, & C. P. Gomes (Eds.), Proceedings of the 23rd AAAI conference on artificial intelligence (AAAI 2008) (pp. 430–435). AAAI Press.Google Scholar
  6. 6.
    Fermé, E., & Hansson, S. O. (2011). AGM 25 years—Twenty-five years of research in belief change. Journal of Philosophical Logic, 40(2), 295–331.CrossRefGoogle Scholar
  7. 7.
    Fermé, E., & Rott, H. (2004). Revision by comparison. Artificial Intelligence, 157, 5–47.CrossRefGoogle Scholar
  8. 8.
    Fuhrmann, A., & Hansson, S. O. (1994). A survey of multiple contractions. Journal of Logic, Language and Information, 3, 39–76.CrossRefGoogle Scholar
  9. 9.
    Grove, A. (1988). Two modellings for theory change. Journal of Philosophical Logic, 17, 157–170.CrossRefGoogle Scholar
  10. 10.
    Grüne-Yanoff, T., & Hansson, S. O. (Eds.) (2009). Preference change: Approaches from philosophy, economics and psychology. Theory and decision library A (Vol. 42). Dordrecht: Springer.Google Scholar
  11. 11.
    Hansson, S. O. (1994). Kernel contraction. Journal of Symbolic Logic, 59, 845–859.CrossRefGoogle Scholar
  12. 12.
    Lang, J., & van der Torre, L. (2010). Preference change triggered by belief change: A principled approach. In G. Bonanno, B. Löwe, & W. van der Hoek (Eds.), Logic and the foundations of game and decision theory: LOFT 2008. LNAI (Vol. 6006, pp. 86–111). Berlin: Springer.CrossRefGoogle Scholar
  13. 13.
    List, C., & Puppe, C. (2009). Judgment aggregation: A survey. In P. Anand, P. K. Pattanaik, & C. Puppe (Eds.), The handbook of rational and social choice: An overview of new foundations and applications (pp. 457–482). Oxford: University Press.CrossRefGoogle Scholar
  14. 14.
    Spohn, W. (1988). Ordinal conditional functions: A dynamic theory of epistemic states. In W. Harper, & B. Skyrms (Eds.), Causation in decision, belief change, and statistics (pp. 105–134). Dordrecht: Kluwer.Google Scholar
  15. 15.
    Zhang, D., & Foo, N. (2001). Infinitary belief revision. Journal of Philosophical Logic, 30, 525–570.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of EconomicsUniversity of CaliforniaDavisUSA
  2. 2.School of Computing ScienceSimon Fraser UniversityBurnabyCanada
  3. 3.Department of PhilosophyUniversity of RegensburgRegensburgGermany

Personalised recommendations