Journal of Philosophical Logic

, Volume 41, Issue 3, pp 595–612 | Cite as

On the Ternary Relation and Conditionality

  • Jc Beall
  • Ross Brady
  • J. Michael Dunn
  • A. P. Hazen
  • Edwin Mares
  • Robert K. Meyer
  • Graham Priest
  • Greg Restall
  • David Ripley
  • John Slaney
  • Richard Sylvan
Article

Abstract

One of the most dominant approaches to semantics for relevant (and many paraconsistent) logics is the Routley–Meyer semantics involving a ternary relation on points. To some (many?), this ternary relation has seemed like a technical trick devoid of an intuitively appealing philosophical story that connects it up with conditionality in general. In this paper, we respond to this worry by providing three different philosophical accounts of the ternary relation that correspond to three conceptions of conditionality. We close by briefly discussing a general conception of conditionality that may unify the three given conceptions.

Keywords

Ternary relation Ternary-relation semantics Possible worlds Situations Modal logics Paraconsistent logics Relevant logics Routley–Meyer semantics Conditionals Conditionality Relative relative possibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, A. R., & Belnap, N. D. (1975). Entailment: The logic of relevance and necessity (Vol. 1). Princeton: Princeton University Press.Google Scholar
  2. 2.
    Barwise, J. (1993). Constraints, channels, and the flow of information. In S. Peters, & D. Israel (Eds.), Situation theory and its applications. Palo Alto: CSLI Publications (CSLI Lecture Notes).Google Scholar
  3. 3.
    Barwise, J., & Perry, J. (1983). Situations and attitudes. Cambridge: MIT Press.Google Scholar
  4. 4.
    Beall, J. (2009). Spandrels of truth. Oxford: Oxford University Press.CrossRefGoogle Scholar
  5. 5.
    Bimbó, K., & Dunn, J. M. (2008). Generalized Galois logics. Relational semantics of nonclassical logical calculi. Palo Alto: CSLI Publications (CSLI Lecture Notes).Google Scholar
  6. 6.
    Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge: Cambridge University Press.Google Scholar
  7. 7.
    Dunn, J. M. (1987). Incompleteness of the binary semantics for R. Bulletin of the Section of Logic, Polish Academy of Sciences, 16, 107–110.Google Scholar
  8. 8.
    Dunn, J. M. (1990). Gaggle theory: An abstraction of galois connections and residuation with applications to negations and various logical operators. In Logics in AI, Proceedings of E uropean workshop JELIA 1990 (Lecture Notes in Computer Science #478) (pp. 31–51). Berlin: Springer. LNCS.Google Scholar
  9. 9.
    Dunn, J. M. (1993). Star and perp: Two treatments of negation. In J. Toberlin (Ed.), Philosophical perspectives: Language and logic (Vol. 7, pp. 331–357).Google Scholar
  10. 10.
    Dunn, J. M. (2001). Representation of relation algebras using Routley–Meyer frames. In C. A. Anderson, & Zeleny, M. (Eds.), Logic, meaning and computation: Essays in memory of Alonzo Church (pp. 77–108). Dordrecht: Kluwer.Google Scholar
  11. 11.
    Dunn, J. M. (2001). Ternary relational semantics and beyond. Logical Studies, 7, 1–20.Google Scholar
  12. 12.
    Dunn, J. M., & Meyer, R. K. (1997). Combinators and structurally free logic. Logic Journal of the IGPL, 5, 505–537.CrossRefGoogle Scholar
  13. 13.
    Fine, K. (1974). Models for entailment. Journal of Philosophical Logic, 3, 347–372.CrossRefGoogle Scholar
  14. 14.
    Krabbe, E. C. W. (1978). Note on a completeness theorem in the theory of counterfactuals. Journal of Philosophical Logic, 7(1), 91–93.CrossRefGoogle Scholar
  15. 15.
    Lewis, C. I., & Langford, C. H. (1959). Symbolic logic. Mineola: Dover.Google Scholar
  16. 16.
    Lewis, D. K. (1973). Counterfactuals (2nd ed.). Oxford: Blackwell.Google Scholar
  17. 17.
    Lycan, W. G. (2001). Real conditionals. Oxford: Oxford University Press.Google Scholar
  18. 18.
    Mares, E. (2004). Relevant logic: A philosophical interpretation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  19. 19.
    Meyer, R. K., & Routley, R. (1974). Classical relevant logics II. Studia Logica, 33(2), 183–194 (1974)CrossRefGoogle Scholar
  20. 20.
    Meyer, R. K., & Slaney, J. (1997). Logic for two: The semantics of distributive substructural logics. In Proceedeings of the first international joint conference on qualitative and quantitative practical reasoning (pp. 554–567).Google Scholar
  21. 21.
    Nute, D. (1975). Counterfactuals and the similarity of worlds. Journal of Philosophy, 72(21), 773–778.CrossRefGoogle Scholar
  22. 22.
    Peirce, C. S. (1992). Reasoning and the logic of things. Cambridge: Harvard University Press. Edited by Kenneth Laine Ketner, with an introduction by Kenneth Laine Ketner and Hilary Putnam.Google Scholar
  23. 23.
    Priest, G. (2008). An introduction to non-classical logic: From if to is. Cambridge: Cambridge University Press.Google Scholar
  24. 24.
    Priest, G. (2009). Is the ternary R depraved? Presented at the July 2009 meeting of the Australasian Association for Logic, Melbourne.Google Scholar
  25. 25.
    Restall, G. (1995). Information flow and relevant logics. In J. Seligman, & D. Westerståhl (Eds.), Logic, language, and computation: The 1994 Moraga proceedings (pp. 463–477). Stanford: CSLI Publications.Google Scholar
  26. 26.
    Restall, G. (1999). Negation in relevant logics: How I stopped worrying and learned to love the Routley star. In D. Gabbay, & H. Wansing (Eds.), What is negation? (pp. 53–76). Dordrecht: Kluwer.Google Scholar
  27. 27.
    Restall, G. (2000). An introduction to substructural logics. London: Routledge.Google Scholar
  28. 28.
    Routley, R., & Meyer, R. K. (1972). Semantics of entailment—II. Journal of Philosophical Logic, 1, 53–73.CrossRefGoogle Scholar
  29. 29.
    Routley, R., & Meyer, R. K. (1972). Semantics of entailment—III. Journal of Philosophical Logic, 1, 192–208.CrossRefGoogle Scholar
  30. 30.
    Routley, R., & Meyer, R. K. (1973). Semantics of entailment. In H. Leblanc (Ed.), Truth, syntax and modality (pp. 194–243). Amsterdam: North Holland. Proceedings of the Temple University conference on alternative semantics.Google Scholar
  31. 31.
    Routley, R., & Meyer, R. K. (1976). Every sentential logic has a two-valued world semantics. Logique et Analyse, 19, 345–365.Google Scholar
  32. 32.
    Routley, R., Meyer, R. K., Plumwood, V., & Brady, R. T. (1982). Relevant logics and their rivals 1. Atascadero: Ridgeview.Google Scholar
  33. 33.
    Slaney, J. (1990). A general logic. Australasian Journal of Philosophy, 68, 74–88.CrossRefGoogle Scholar
  34. 34.
    Thomason, R. (1970). A Fitch-style formulation of conditional logic. Logique et Analyse, 52, 397–412.Google Scholar
  35. 35.
    Urquhart, A. (1972). Semantics for relevant logics. Journal of Symbolic Logic, 37(1), 159–169.CrossRefGoogle Scholar
  36. 36.
    van Benthem, J. (1984). Review of ‘On when a semantics is not a semantics’ by B. J. Copeland. Journal of Symbolic Logic, 49(3), 994–995.CrossRefGoogle Scholar
  37. 37.
    van Benthem, J. (1991). Language in action. Categories, lambdas and dynamic logic. Amsterdam: Elsevier.Google Scholar
  38. 38.
    van Fraassen, B. C. (1975). Theories and counterfactuals. In H.-N. Castañeda (Ed.), Action, knowledge, and reality: Studies in honor of Wilfrid S ellars (pp. 237–263). Indianapolis: Bobbs-Merrill.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jc Beall
    • 1
    • 2
  • Ross Brady
    • 3
  • J. Michael Dunn
    • 4
  • A. P. Hazen
    • 5
    • 6
  • Edwin Mares
    • 7
  • Robert K. Meyer
    • 8
  • Graham Priest
    • 6
    • 9
    • 10
  • Greg Restall
    • 6
  • David Ripley
    • 6
  • John Slaney
    • 8
  • Richard Sylvan
    • 8
  1. 1.University of ConnecticutStorrsUSA
  2. 2.University of OtagoOtagoNew Zealand
  3. 3.La Trobe UniversityMelbourneAustralia
  4. 4.Indiana UniversityBloomingtonUSA
  5. 5.University of AlbertaAlbertaCanada
  6. 6.University of MelbourneParkvilleAustralia
  7. 7.Victoria University of WellingtonWellingtonNew Zealand
  8. 8.Australian National UniversityCanberraAustralia
  9. 9.Graduate CenterCity University of New YorkNew YorkUSA
  10. 10.University of St AndrewsFifeUK

Personalised recommendations