Journal of Philosophical Logic

, Volume 41, Issue 3, pp 563–593

Partially Undetermined Many-Valued Events and Their Conditional Probability



A logic for classical conditional events was investigated by Dubois and Prade. In their approach, the truth value of a conditional event may be undetermined. In this paper we extend the treatment to many-valued events. Then we support the thesis that probability over partially undetermined events is a conditional probability, and we interpret it in terms of bets in the style of de Finetti. Finally, we show that the whole investigation can be carried out in a logical and algebraic setting, and we find a logical characterization of coherence for assessments of partially undetermined events.


Many-valued logic Conditional probability States 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguzzoli, S., Gerla, B., & Marra, V. (2008). De Finetti’s no Dutch-book criterion for Gödel logic. Studia Logica, 90, 25–41.CrossRefGoogle Scholar
  2. 2.
    Blok, W., & Pigozzi, D. (1989). Algebraizable logics. In Memoirs of the American Mathematical Society (Vol. 396(77)). Providence: American Mathematical Society.Google Scholar
  3. 3.
    Burris, S., & Sankappanavar, H. P. (1981). A course in universal algebra. New York: Springer.CrossRefGoogle Scholar
  4. 4.
    Busaniche, M., & Cignoli, R. (2009). Residuated lattices as an algebraic semantics for paraconsistent Nelson’s logic. Journal of Logic and Computation, 19(6), 1019–1029.CrossRefGoogle Scholar
  5. 5.
    Canny, F. J. (1988). Some algebraic and geometric computation in PSPACE. In Proc. 20th ACM symp. on theory of computing (pp. 460–467).Google Scholar
  6. 6.
    Chang, C. C. (1989). A new proof of the completeness of Łukasiewicz axioms. Transactions of the American Mathematical Society, 93, 74–80.Google Scholar
  7. 7.
    Cintula, P. (2006). Weakly implicative (fuzzy) logics I: Basic properties. Archive for Mathematical Logic, 45, 673–704.CrossRefGoogle Scholar
  8. 8.
    Coletti, G., & Scozzafava, R. (2002). Probabilistic logic in a coherent setting. Dordrecht: Kluwer.CrossRefGoogle Scholar
  9. 9.
    Czelakowski, J. (2001). Protoalgebraic logics. Dordrecht: Kluwer.Google Scholar
  10. 10.
    Dubois, D., & Prade, H. (1994). Conditional objects as nonmonotonic consequence relations. IEEE Transactions on Systems, Man and Cybernetics, 24(12), 1724–1740. IEEE.CrossRefGoogle Scholar
  11. 11.
    Flaminio, T., & Montagna, F. (2009). MV algebras with internal states and probabilistic fuzzy logics. International Journal of Approximate Reasoning, 50(1), 138–152.CrossRefGoogle Scholar
  12. 12.
    Hájek, P. (1998). Metamathematics of fuzzy logic. Dordrecht: Kluwer.CrossRefGoogle Scholar
  13. 13.
    Kroupa, T. (2006). Every state on a semisimple MV algebra is integral. Fuzzy Sets and Systems, 157(20), 2771–2787.CrossRefGoogle Scholar
  14. 14.
    Kroupa, T. (2005). Conditional probability on MV-algebras. Fuzzy Sets and Systems, 149(2), 369–381.CrossRefGoogle Scholar
  15. 15.
    Kühr, J., & Mundici, D. (2007). De Finetti theorem and Borel states in [0,1]-valued algebraic logic. International Journal of Approximate Reasoning, 46(3), 605–616.CrossRefGoogle Scholar
  16. 16.
    Montagna, F. (2000). An algebraic approach to propositional fuzzy logic. Journal of Logic, Language and Information, 9, 91–124.CrossRefGoogle Scholar
  17. 17.
    Montagna, F. (2005). Subreducts of MV algebras with product and product residuation. Algebra Universalis, 53, 109–137.CrossRefGoogle Scholar
  18. 18.
    Montagna, F. (2009). A notion of coherence for books on conditional events in many-valued logic. Journal of Logic and Computation. doi:10.1093/logcom/exp061. First published online: 17 September 2009.
  19. 19.
    Mundici, D. (1995). Averaging the truth value in Łukasiewicz logic. Studia Logica, 55(1), 113–127.CrossRefGoogle Scholar
  20. 20.
    Mundici, D. (2006). Bookmaking over infinite-valued events. International Journal of Approximate Reasoning, 46, 223–240.CrossRefGoogle Scholar
  21. 21.
    Mundici, D. (2008). Faithful and invariant conditional probability in Łukasiewicz logic. In D. Makinson, J. Malinowski, & H. Wansing (Eds.), Trends in logic 27: Towards mathematical philosophy (pp. 1–20). Springer.Google Scholar
  22. 22.
    Panti, G. (2008). Invariant measures in free MV algebras. Communications in Algebra, 36, 2849–2861.CrossRefGoogle Scholar
  23. 23.
    Papadimitriu, C. H. (1994). Computational complexity. Addison-Wesley.Google Scholar
  24. 24.
    Paris, J. B. (2001). A note on the Dutch Book Method. In T. S. Gert De Cooman, & T. Fine (Eds.), ISIPTA ’01, Proceedings of the second international symposium on imprecise probabilities and their applications, Ithaca, NY, USA. Shaker.Google Scholar
  25. 25.
    Sendlewski, A. (1990). Nelson algebras through Heyting ones, I. Studia Logica, 49, 105–126.CrossRefGoogle Scholar
  26. 26.
    Tsinakis, C., & Wille, A. (2006). Minimal varieties of involutive residuated lattices. Studia Logica, 83, 407–423.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of SienaSienaItaly

Personalised recommendations