Journal of Philosophical Logic

, Volume 41, Issue 2, pp 505–517

# If Logic, Definitions and the Vicious Circle Principle

Article

## Abstract

In a definition (∀x)((xєr)↔D[x]) of the set r, the definiens D[x] must not depend on the definiendum r. This implies that all quantifiers in D[x] are independent of r and of (∀x). This cannot be implemented in the traditional first-order logic, but can be expressed in IF logic. Violations of such independence requirements are what created the typical paradoxes of set theory. Poincaré’s Vicious Circle Principle was intended to bar such violations. Russell nevertheless misunderstood the principle; for him a set a can depend on another set b only if (bєa) or (b ⊆ a). Likewise, the truth of an ordinary first-order sentence with the Gödel number of r is undefinable in Tarki’s sense because the quantifiers of the definiens depend unavoidably on r.

### Keywords

(In)dependence IF logic Definitions Vicious circle principle Truth-definition

## Preview

### References

1. 1.
Bann, R. (1980). Developments in the foundations of mathematics 1870-1910. In I. GrattanGuinness (Ed.), From calculus to set theory (pp. 220–255). Princeton: Princeton U.P.Google Scholar
2. 2.
Feferman, S. (2005). Predicativity. In S. Shapiro (Ed.), Oxford handbook of philosophy of mathematics and logic (pp. 590–624). New York: Oxford U.P.
3. 3.
4. 4.
Heijenoort, Jean van, 1967, From Frege to Gödel. A Source Book in Mathematical Logic. Harvard University Press, Cambridge, MA.Google Scholar
5. 5.
Hintikka, J. (1996). Principles of mathematics revisited. Cambridge: Cambridge U.P.
6. 6.
Hintikka, J. (2009). A proof of nominalism: An exercise in successful reduction in logic. In A. Hieke & H. Leitgeb (Eds.), Reduction—abstraction—analysis (pp. 1–14). Heusenstam: Ontos Verlag.Google Scholar
7. 7.
Hintikka, J., & Symons, J. (forthcoming). Game-theoretical semantics as a basis ofgeneral logic.Google Scholar
8. 8.
Peano, G. (1973). In H. Kennedy (Ed.), Selected Works. Toronto: University of Toronto Press.Google Scholar
9. 9.
Poincaré, H. (1905-06) Les mathématiques et la logique Part II, Revue métaphysique etmorale. 13: pp. 815–835 and 14: 17–34, 294–317.Google Scholar
10. 10.
Poincaré, H. (1908) Science et Méthode, E. Flammarion, Paris. In English as Science andMethod, Dover, New York, 1952.Google Scholar
11. 11.
Poincaré, H. (1909). Reflexions sur les deux notes precedents. Acta Mathematica, 32, 195–200.
12. 12.
Russell, B. (1906). Les paradoxes de la logique. Revue de métaphysique et de morale, 14, 627–650.Google Scholar
13. 13.
Russell, B., & Whitehead, A. N. (1910). Principia mathematica (Vol. 1). Cambridge: Cambridge U.P.Google Scholar
14. 14.
Sandu, G., Mann, A. L., & Sevenster, M. (forthcoming). Independence-friendlyLogic: A Game-theoretical Approach. Cambridge U.P., Cambridge.Google Scholar