Journal of Philosophical Logic

, Volume 41, Issue 2, pp 505–517 | Cite as

If Logic, Definitions and the Vicious Circle Principle

Article

Abstract

In a definition (∀x)((xєr)↔D[x]) of the set r, the definiens D[x] must not depend on the definiendum r. This implies that all quantifiers in D[x] are independent of r and of (∀x). This cannot be implemented in the traditional first-order logic, but can be expressed in IF logic. Violations of such independence requirements are what created the typical paradoxes of set theory. Poincaré’s Vicious Circle Principle was intended to bar such violations. Russell nevertheless misunderstood the principle; for him a set a can depend on another set b only if (bєa) or (b ⊆ a). Likewise, the truth of an ordinary first-order sentence with the Gödel number of r is undefinable in Tarki’s sense because the quantifiers of the definiens depend unavoidably on r.

Keywords

(In)dependence IF logic Definitions Vicious circle principle Truth-definition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bann, R. (1980). Developments in the foundations of mathematics 1870-1910. In I. GrattanGuinness (Ed.), From calculus to set theory (pp. 220–255). Princeton: Princeton U.P.Google Scholar
  2. 2.
    Feferman, S. (2005). Predicativity. In S. Shapiro (Ed.), Oxford handbook of philosophy of mathematics and logic (pp. 590–624). New York: Oxford U.P.CrossRefGoogle Scholar
  3. 3.
    Garciadego, A. R. (1992). Bertrand Russell and the origins of set-theoretical paradoxes. Basel: Birkhäuser.Google Scholar
  4. 4.
    Heijenoort, Jean van, 1967, From Frege to Gödel. A Source Book in Mathematical Logic. Harvard University Press, Cambridge, MA.Google Scholar
  5. 5.
    Hintikka, J. (1996). Principles of mathematics revisited. Cambridge: Cambridge U.P.CrossRefGoogle Scholar
  6. 6.
    Hintikka, J. (2009). A proof of nominalism: An exercise in successful reduction in logic. In A. Hieke & H. Leitgeb (Eds.), Reduction—abstraction—analysis (pp. 1–14). Heusenstam: Ontos Verlag.Google Scholar
  7. 7.
    Hintikka, J., & Symons, J. (forthcoming). Game-theoretical semantics as a basis ofgeneral logic.Google Scholar
  8. 8.
    Peano, G. (1973). In H. Kennedy (Ed.), Selected Works. Toronto: University of Toronto Press.Google Scholar
  9. 9.
    Poincaré, H. (1905-06) Les mathématiques et la logique Part II, Revue métaphysique etmorale. 13: pp. 815–835 and 14: 17–34, 294–317.Google Scholar
  10. 10.
    Poincaré, H. (1908) Science et Méthode, E. Flammarion, Paris. In English as Science andMethod, Dover, New York, 1952.Google Scholar
  11. 11.
    Poincaré, H. (1909). Reflexions sur les deux notes precedents. Acta Mathematica, 32, 195–200.CrossRefGoogle Scholar
  12. 12.
    Russell, B. (1906). Les paradoxes de la logique. Revue de métaphysique et de morale, 14, 627–650.Google Scholar
  13. 13.
    Russell, B., & Whitehead, A. N. (1910). Principia mathematica (Vol. 1). Cambridge: Cambridge U.P.Google Scholar
  14. 14.
    Sandu, G., Mann, A. L., & Sevenster, M. (forthcoming). Independence-friendlyLogic: A Game-theoretical Approach. Cambridge U.P., Cambridge.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of PhilosophyBoston UniversityBostonUSA
  2. 2.Collegium for Advanced StudiesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations