Advertisement

Journal of Philosophical Logic

, Volume 40, Issue 2, pp 239–270 | Cite as

Logic Based Merging

  • Sébastien Konieczny
  • Ramón Pino Pérez
Article

Abstract

Belief merging aims at combining several pieces of information coming from different sources. In this paper we review the works on belief merging of propositional bases. We discuss the relationship between merging, revision, update and confluence, and some links between belief merging and social choice theory. Finally we mention the main generalizations of these works in other logical frameworks.

Keywords

Belief merging Arbitration Belief change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50, 510–530.CrossRefGoogle Scholar
  2. 2.
    Arieli, O. (2008). Distance-based paraconsistent logics. International Journal of Approximate Reasoning, 48(3), 766–783.CrossRefGoogle Scholar
  3. 3.
    Arrow, K., Sen, A. K., & Suzumura, K. (Eds.) (2002). Handbook of Social Choice and Welfare, Vol. 1. North-Holland.Google Scholar
  4. 4.
    Arrow, K. J. (1963). Social choice and individual values (2nd ed.). New York: Wiley.Google Scholar
  5. 5.
    Ayoun, A., & Smets, P. (2001). Data association in multi-target detection using the transferable belief model. International Journal of Intelligent Systems, 16(10), 1167–1182.CrossRefGoogle Scholar
  6. 6.
    Baral, C., Kraus, S., & Minker, J. (1991). Combining multiple knowledge bases. IEEE Transactions on Knowledge and Data Engineering, 3(2), 208–220.CrossRefGoogle Scholar
  7. 7.
    Baral, C., Kraus, S., Minker, J., & Subrahmanian, V. S.(1992). Combining knowledge bases consisting of first-order theories. Computational Intelligence, 8(1), 45–71.CrossRefGoogle Scholar
  8. 8.
    Benferhat, S., Dubois, D., Kaci, S., & Prade, H. (2002). Possibilistic merging and distance-based fusion of propositional information. Annals of Mathematics and Artificial Intelligence, 34(1–3), 217–252.CrossRefGoogle Scholar
  9. 9.
    Benferhat, S., Dubois, D., Lang, J., Prade, H., Saffioti, A., & Smets, P. (1998). A general approach for inconsistency handling and merging information in prioritized knowledge bases. In Proceedings of the sixth international conference on principles of knowledge representation and reasoning (KR’98) (pp. 466–477).Google Scholar
  10. 10.
    Benferhat, S., Dubois, D., & Prade, H. (1997). Some syntactic approaches to the handling of inconsistent knowledge bases: A comparative study, part 1: The flat case. Studia Logica, 58, 17–45.CrossRefGoogle Scholar
  11. 11.
    Benferhat, S., Dubois, D., & Prade, H. (1998). Logic at work (Ewa Orlowska, (eds)) (Vol. 24, Chapt. Some syntactic approaches to the handling of inconsistent knowledge bases: A comparative study.). Part 2: The prioritized case, pp. 473–511. Physica-Verlag, Heidelberg.Google Scholar
  12. 12.
    Benferhat, S., & Kaci, S. (2003). Fusion of possibilistic knowledge bases from a postulate point of view. International Journal of Approximate Reasoning, 33(3), 255–285.CrossRefGoogle Scholar
  13. 13.
    Benferhat, S., Lagrue, S., & Rossit, J. (2009). An analysis of sum-based incommensurable belief base merging. In Proceedings of the third international conference on scalable uncertainty management (SUM’08) (pp. 55–67).Google Scholar
  14. 14.
    Benferhat, S., Lagrue, S., & Rossit, J. (2009). Max-based prioritized information fusion without commensurability. Journal of Logic and Computation, 19(6), 1577–1610.CrossRefGoogle Scholar
  15. 15.
    Besnard, P., & Schaub, T. (1998). Signed systems for paraconsistent reasoning. Journal of Automated Reasoning, 20(1), 191–213.CrossRefGoogle Scholar
  16. 16.
    Bloch, I., Géraud, T., & Maître, H. (2003). Representation and fusion of heterogeneous fuzzy information in the 3D space for model-based structural recognition–application to 3D brain imaging. Artificial Intelligence, 148(1–2), 141–175.CrossRefGoogle Scholar
  17. 17.
    Bloch, I., Hunter, A., Appriou, A., Ayoun, A., Benferhat, S., Besnard, P., et al. (2001). Fusion: General concepts and characteristics. International Journal of Intelligent Systems, 16(10), 1107–1134.CrossRefGoogle Scholar
  18. 18.
    Bloch, I., & Lang, J. (2000). Towards mathematical morpho-logics. In Proceedings of the eigth international conference on information processing and management of uncertainty in knowledge-based systems (IPMU’00) (pp. 1405–1412).Google Scholar
  19. 19.
    Booth, R. (2006). Social contraction and belief negotiation. Information Fusion, 7(1), 19–34.Google Scholar
  20. 20.
    Borgida, A. (1985). Language features for flexible handling of exceptions in information systems. ACM Transactions on Database Systems, 10, 563–603.CrossRefGoogle Scholar
  21. 21.
    Bovens, L., & Rabinowicz, W. (2006). Democratic answers to complex questions. An epistemic perspective. Synthese, 150, 131–153.CrossRefGoogle Scholar
  22. 22.
    Brams, S. J., & Fishburn, P. C. (1983). Approval voting. Springer Verlag.Google Scholar
  23. 23.
    Chacón, J. L., & Pino Pérez, R. (2006). Merging operators: Beyond the finite case. Information Fusion, 7(1), 41–60.Google Scholar
  24. 24.
    Chopra, S., Ghose, A., & Meyer, T. (2006). Social choice theory, belief merging, and strategy-proofness. Information Fusion, 7(1), 61–79.Google Scholar
  25. 25.
    Condotta, J.-F., Kaci, S., Marquis, P., & Schwind, N. (2009). Merging qualitative constraint networks in a piecewise fashion. In Proceedings of the twenty first international conference on tools with artificial intelligence (ICTAI’09) (pp. 605–608).Google Scholar
  26. 26.
    Condotta, J.-F., Kaci, S., Marquis, P., & Schwind, N. (2009). Merging qualitative constraints networks using propositional logic. In Proceedings of the tenth European conference on symbolic and quantitative approaches to reasoning with uncertainty (ECSQARU’09) (pp. 347–358).Google Scholar
  27. 27.
    Condotta, J.-F., Kaci, S., Marquis, P., & Schwind, N. (2010). Majority merging: From Boolean spaces to affine spaces. In Proceedings of the nineteenth European conference on artificial intelligence (ECAI’10) (pp. 627–632).Google Scholar
  28. 28.
    Coste-Marquis, S., Devred, C., Konieczny, S., Lagasquie-Schiex, M.-C., & Marquis, P. (2007). On the merging of Dung’s argumentation systems. Artificial Intelligence, 171, 740–753.Google Scholar
  29. 29.
    Dalal, M. (1988). Investigations into a theory of knowledge base revision: Preliminary report. In Proceedings of the AAAI conference on artificial intelligence (AAAI’88) (pp. 475–479).Google Scholar
  30. 30.
    Darwiche, A., & Pearl, J. (1997). On the logic of iterated belief revision. Artificial Intelligence, 89, 1–29.CrossRefGoogle Scholar
  31. 31.
    Dastani, M., & van der Torre, L. W. N. (2002). Specifying the merging of desires into goals in the context of beliefs. In Proceedings of the EurAsia-ICT conference (LNCS 2510) (pp. 824–831).Google Scholar
  32. 32.
    Delgrande, J. P., Dubois, D., & Lang, J. (2006). Iterated revision as prioritized merging. In Proceedings of the tenth international conference on knowledge representation and reasoning (KR’06) (pp. 210–220).Google Scholar
  33. 33.
    Delgrande, J. P., Liu, D. H., Schaub, T., & Thiele, S. (2007). COBA 2.0: A consistency-based belief change system. In Proceedings of the ninth international conference on symbolic and quantitative approaches to reasoning with uncertainty (ECSQARU’07) (pp. 78–90).Google Scholar
  34. 34.
    Delgrande, J. P., & Schaub, T. (2007). A consistency-based framework for merging knowledge bases. Journal of Applied Logic, 5(3), 459–477.CrossRefGoogle Scholar
  35. 35.
    Delgrande, J. P., Schaub, T., Tompits, H., & Woltran, S. (2009). Merging logic programs under answer set semantics. In Proceedings of the twenty fifth international conference on logic programming (ICLP’09) (pp. 160–174).Google Scholar
  36. 36.
    Dubois, D., Lang, J., & Prade, H. (1994). Possibilistic logic. In Handbook of logic in artificial intelligence and logic programming (Vol. 3). Oxford Science Publications.Google Scholar
  37. 37.
    Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77, 321–357.CrossRefGoogle Scholar
  38. 38.
    Dupin de Saint-Cyr, F., & Lang, J. (2002). Belief extrapolation (or how to reason about observations and unpredicted change). In Proceedings of the eighth conference on principles of knowledge representation and reasoning (KR’02) (pp. 497–508).Google Scholar
  39. 39.
    Everaere, P., Konieczny, S., & Marquis, P. (2007). The strategy-proofness landscape of merging. Journal of Artificial Intelligence Research, 28, 49–105.Google Scholar
  40. 40.
    Everaere, P., Konieczny, S., & Marquis, P. (2008). Conflict-based merging operators. In Proceedings of the eleventh international conference on principles of knowledge representation and reasoning (KR’08) (pp. 348–357).Google Scholar
  41. 41.
    Everaere, P., Konieczny, S., & Marquis, P. (2010). Disjunctive merging: Quota and gmin merging operators. Artificial Intelligence, 174(12–13), 824–849.CrossRefGoogle Scholar
  42. 42.
    Everaere, P., Konieczny, S., & Marquis, P. (2010). The epistemic view of belief merging: Can we track the truth?. In Proceedings of the nineteenth European conference on artificial intelligence (ECAI’10) (pp. 621–626).Google Scholar
  43. 43.
    Friedman, N., & Halpern, J. (1996). Belief revision: A critique. In Proceedings of the fifth international conference on principles of knowledge representation and reasoning (KR’96) (pp. 421–431).Google Scholar
  44. 44.
    Gärdenfors, P. (1988). Knowledge in flux. MIT Press.Google Scholar
  45. 45.
    Gärdenfors, P. (Ed.) (1992). Belief revision. Cambridge University Press.Google Scholar
  46. 46.
    Gauwin, O., Konieczny, S., & Marquis, P. (2007). Conciliation through iterated belief merging. Journal of Logic and Computation, 17(5), 909–937.CrossRefGoogle Scholar
  47. 47.
    Ghose, A., & Lin, Q. (2006). Viewpoints merging via incrementally elicited ranked structures. In Proceedings of the sixth international conference on quality software (QSIC ’06) (pp. 141–150).Google Scholar
  48. 48.
    Gibbard, A. (1973). Manipulation of voting schemes. Econometrica, 41, 587–602.CrossRefGoogle Scholar
  49. 49.
    Gorogiannis, N., & Hunter, A. (2008). Implementing semantic merging operators using binary decision diagrams. International Journal of Approximate Reasoning, 49(1), 234–251.CrossRefGoogle Scholar
  50. 50.
    Gorogiannis, N., & Hunter, A. (2008). Merging first-order knowledge using dilation operators. In Proceedings of the fifth international symposium on foundations of information and knowledge systems (FoIKS’08) (pp. 132–150).Google Scholar
  51. 51.
    Hansson, S. O. (1998). What’s new isn’t always best. Theoria, 1–13. (Special issue on non-prioritized belief revision).Google Scholar
  52. 52.
    Herzig, A., & Rifi, O. (1998). Update operations: A review. In Proceedings of the thirteenth European conference on artificial intelligence (ECAI’98) (pp. 13–17).Google Scholar
  53. 53.
    Hué, J., Papini, O., & Würbel, E. (2009). Merging belief bases represented by logic programs. In Proceedings of the tenth international conference on symbolic and quantitative approaches to reasoning with uncertainty (ECSQARU’09) (pp. 371–382).Google Scholar
  54. 54.
    Hunter, A. (2002). Logical fusion rules for merging structured news reports. Data & Knowledge Engineering, 42(1), 23–56.CrossRefGoogle Scholar
  55. 55.
    Hunter, A. (2002). Merging structured text using temporal knowledge. Data & Knowledge Engineering, 41(1), 29–66.CrossRefGoogle Scholar
  56. 56.
    Hunter, A., & Liu, W. (2006). Merging uncertain information with semantic heterogeneity in XML. Knowledge and Information Systems, 9(2), 230–258.CrossRefGoogle Scholar
  57. 57.
    Hunter, A., & Liu, W. (2009). Knowledge base stratification and merging based on degree of support. In Proceedings of the tenth European conference on symbolic and quantitative approaches to reasoning with uncertainty (ECSQARU’09) (pp. 383–395).Google Scholar
  58. 58.
    Hunter, A., & Summerton, R. (2006). Merging news reports that describe events. Data & Knowledge Engineering, 59(1), 1–24.CrossRefGoogle Scholar
  59. 59.
    Kaci, S., Benferhat, S., Dubois, D., & Prade, H. (2000). A principled analysis of merging operations in possibilistic logic. In Proceedings of the sixteenth conference in uncertainty in artificial intelligence (UAI’00) (pp. 24–31).Google Scholar
  60. 60.
    Katsuno, H., & Mendelzon, A. O. (1991). On the difference between updating a knowledge base and revising it. In Proceedings of the second international conference on principles of knowledge representation and reasoning (KR’91) (pp. 387–394).Google Scholar
  61. 61.
    Katsuno, H., & Mendelzon, A. O. (1991). Propositional knowledge base revision and minimal change. Artificial Intelligence, 52, 263–294.CrossRefGoogle Scholar
  62. 62.
    Kelly, J. S. (1988). Social choice theory: An introduction. Springer-Verlag.Google Scholar
  63. 63.
    Konieczny, S. (2000). On the difference between merging knowledge bases and combining them. In Proceedings of the seventh international conference on principles of knowledge representation and reasoning (KR’00) (pp. 135–144).Google Scholar
  64. 64.
    Konieczny, S. (2004). Belief base merging as a game. Journal of Applied Non-Classical Logics, 14(3), 275–294.CrossRefGoogle Scholar
  65. 65.
    Konieczny, S. (2009). Using transfinite ordinal conditional functions. In Proceedings of the tenth European conference on symbolic and quantitative approaches to reasoning with uncertainty (ECSQARU’09) (pp. 396–407).Google Scholar
  66. 66.
    Konieczny, S., Lang, J., & Marquis, P. (2004). DA2 merging operators. Artificial Intelligence, 157(1–2), 49–79.CrossRefGoogle Scholar
  67. 67.
    Konieczny, S., & Pino Pérez, R. (1998). On the logic of merging. In Proceedings of the sixth international conference on principles of knowledge representation and reasoning (KR’98) (pp. 488–498).Google Scholar
  68. 68.
    Konieczny, S., & Pino Pérez, R. (2000). A framework for iterated revision. Journal of Applied Non-Classical Logics, 10(3–4), 339–367.Google Scholar
  69. 69.
    Konieczny, S., & Pino Pérez, R. (2002). Merging information under constraints: A logical framework. Journal of Logic and Computation, 12(5), 773–808.CrossRefGoogle Scholar
  70. 70.
    Konieczny, S., & Pino Pérez, R. (2002). On the frontier between arbitration and majority. In Proceedings of the eighth international conference on principles of knowledge representation and reasoning (KR’02) (pp. 109–118).Google Scholar
  71. 71.
    Konieczny, S., & Pino Pérez, R. (2008). Confluence operators. In Proceedings of the eleventh European conference on logics in artificial intelligence (JELIA’08) (pp. 272–284).Google Scholar
  72. 72.
    Lang, J. (2007). Belief update revisited. In Proceedings of the twentieth international joint conference on artificial intelligence (IJCAI’07) (pp. 2517–2522).Google Scholar
  73. 73.
    Lehmann, D. (1995). Belief revision, revised. In Proceedings of the fourteenth international joint conference on artificial intelligence (IJCAI’95) (pp. 1534–1540).Google Scholar
  74. 74.
    Liberatore, P., & Schaerf, M. (1998). Arbitration (or how to merge knowledge bases). IEEE Transactions on Knowledge and Data Engineering, 10(1), 76–90.CrossRefGoogle Scholar
  75. 75.
    Liberatore, P., & Schaerf, M. (2000). BReLS: A system for the integration of knowledge bases. In Proceedings of the seventh international conference on principles of knowledge representation and reasoning (KR’00) (pp. 145–152).Google Scholar
  76. 76.
    Lin, J. (1996). Integration of weighted knowledge bases. Artificial Intelligence, 83(2), 363–378.CrossRefGoogle Scholar
  77. 77.
    Lin, J., & Mendelzon, A. O. (1998). Merging databases under constraints. International Journal of Cooperative Information System, 7(1), 55–76.CrossRefGoogle Scholar
  78. 78.
    Lin, J., & Mendelzon, A. O. (1999). Knowledge base merging by majority. In Dynamic worlds: From the frame problem to knowledge management.Google Scholar
  79. 79.
    List, C., & Polak, B. (2010). Introduction to judgment aggregation. Journal of Economic Theory, 145(2), 441–466.CrossRefGoogle Scholar
  80. 80.
    Marquis de Condorcet. (1785). Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Paris.Google Scholar
  81. 81.
    Meyer, T., Foo, N., Zhang, D., & Kwok, R. (2004). Logical foundations of negotiation: Outcome, concession and adaptation. In Proceedings of the AAAI conference on artificial intelligence (AAAI’04) (pp. 293–298).Google Scholar
  82. 82.
    Meyer, T. A. (2001). On the semantics of combination operations. Journal of Applied Non-Classical Logics, 11(1–2), 59–84.CrossRefGoogle Scholar
  83. 83.
    Mu, K., Liu, W., Jin, Z., Lu, R., Yue, A., & Bell, D. A. (2007). A merging-based approach to handling inconsistency in locally prioritized software requirements. In Proceedings of the second Conference on knowledge science, engineering and management (KSEM’07) (pp. 103–114).Google Scholar
  84. 84.
    Pigozzi, G. (2006). Belief merging and the discursive dilemma: An argument-based account to paradoxes of judgment aggregation. Synthese, 152(2), 285–298.CrossRefGoogle Scholar
  85. 85.
    Pigozzi, G., & Hartmann, S. (2007). Judgment aggregation and the problem of truth-tracking. In Proceedings of the eleventh conference on theoretical aspects of rationality and knowledge (TARK’07) (pp. 248–252).Google Scholar
  86. 86.
    Qi, G. (2007). A model-based approach for merging prioritized knowledge bases in possibilistic logic. In Proceedings of the AAAI conference on artificial intelligence (AAAI’07) (pp. 471–476).Google Scholar
  87. 87.
    Qi, G., Liu, W., & Bell, D. A. (2006). Merging stratified knowledge bases under constraints. In Proceedings of the twenty-first AAAI conference on artificial intelligence (AAAI’06).Google Scholar
  88. 88.
    Rescher, N., & Manor, R. (1970). On inference from inconsistent premises. Theory and Decision, 1, 179–219.CrossRefGoogle Scholar
  89. 89.
    Revesz, P. Z. (1993). On the semantics of theory change: Arbitration between old and new information. In Proceedings of the twelfth ACM SIGACT-SIGMOD-SIGART symposium on principles of databases (pp. 71–92).Google Scholar
  90. 90.
    Revesz, P. Z. (1997). Model-theoretic minimal chenge operators for constraint databases. In Proceedings of the sixth international conference on database theory (ICDT’97) (pp. 447–460).Google Scholar
  91. 91.
    Revesz, P. Z. (1997). On the semantics of arbitration. International Journal of Algebra and Computation, 7(2), 133–160.CrossRefGoogle Scholar
  92. 92.
    Satterthwaite, M. (1975). Strategy-proofness and Arrow’s conditions. Journal of Economic Theory, 10, 187–217.CrossRefGoogle Scholar
  93. 93.
    Smets, P. (1990). The combination of evidence in the transferable belief model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(5), 447–458.CrossRefGoogle Scholar
  94. 94.
    Spohn, W. (1987). Ordinal conditional functions: A dynamic theory of epistemic states. In W. L. Harper, & B. Skyrms (Eds.), Causation in decision, belief change, and statistics (Vol. 2., pp. 105–134).Google Scholar
  95. 95.
    Zhang, D. (2005). A logical model for Nash bargaining solution. In Proceedings of the nineteenth international joint conference on artificial intelligence (IJCAI-05) (pp. 983–988).Google Scholar
  96. 96.
    Zhang, D. (2007). Reasoning about bargaining situations. In Proceedings of the AAAI conference on artificial intelligence (AAAI’07) (pp. 154–159).Google Scholar
  97. 97.
    Zhang, D., & Zhang, Y. (2008). An ordinal bargaining solution with fixed-point property. Journal of Artificial Intelligence Research, 33(1), 433–464.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Centre de Recherche en Informatique de Lens (CRIL)CNRSLensFrance
  2. 2.Departamento de Matemáticas, Facultad de CienciasUniversidad de Los AndesMéridaVenezuela

Personalised recommendations