Journal of Philosophical Logic

, Volume 39, Issue 6, pp 593–616 | Cite as

Explication of Inductive Probability

Article

Abstract

Inductive probability is the logical concept of probability in ordinary language. It is vague but it can be explicated by defining a clear and precise concept that can serve some of the same purposes. This paper presents a general method for doing such an explication and then a particular explication due to Carnap. Common criticisms of Carnap’s inductive logic are examined; it is shown that most of them are spurious and the others are not fundamental.

Keywords

Inductive probability Explication Carnap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carnap, R. (1936). Testability and meaning, parts I–III. Philosophy of Science, 3, 419–471. Reprinted by the Graduate Philosophy Club, Yale University, 1950.Google Scholar
  2. 2.
    Carnap, R. (1937). The logical syntax of language. Routledge and Kegan Paul. Translated by Amethe Smeaton.Google Scholar
  3. 3.
    Carnap, R. (1945). On inductive logic. Philosophy of Science, 12, 72–97.Google Scholar
  4. 4.
    Carnap, R. (1950). Logical foundations of probability (2nd ed., 1962). University of Chicago Press.Google Scholar
  5. 5.
    Carnap, R. (1952). The continuum of inductive methods. University of Chicago Press.Google Scholar
  6. 6.
    Carnap, R. (1956). Meaning and necessity (2nd ed.). University of Chicago Press.Google Scholar
  7. 7.
    Carnap, R. (1963). Intellectual autobiography. In P. A. Schilpp (Ed.), The philosophy of Rudolf Carnap (pp. 1–84). Open Court.Google Scholar
  8. 8.
    Carnap, R. (1971). A basic system of inductive logic, part I. In R. Carnap, & R. Jeffrey (Eds.), Studies in inductive logic and probability (Vol. 1, pp. 33–165). Berkeley: University of California Press.Google Scholar
  9. 9.
    Carnap, R. (1980). A basic system of inductive logic, part II. In R. C. Jeffrey (Ed.), Studies in inductive logic and probability (Vol. 2, pp. 7–155). University of California Press.Google Scholar
  10. 10.
    Congdon, P. (2007). Bayesian statistical modelling (2nd ed.). Wiley.Google Scholar
  11. 11.
    de Finetti, B. (1937). La prevision: Ses lois logiques, ses sources subjectives. Annales de l’Institut Henri P oincaré, 7, 1–68. English translation in [23].Google Scholar
  12. 12.
    de Finetti, B. (2008). Philosophical lectures on probability. Springer.Google Scholar
  13. 13.
    Fine, T. L. (1973). Theories of probability. Academic.Google Scholar
  14. 14.
    Freudenthal, H. (1974). The crux of course design in probability. Educational Studies in Mathematics, 5, 261–277. Errata in vol. 6, p. 125 (1975).Google Scholar
  15. 15.
    Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2003). Bayesian data analysis (2nd ed.). Chapman & Hall.Google Scholar
  16. 16.
    Goodman, N. (1979). Fact, fiction, and forecast (3rd ed.). Hackett.Google Scholar
  17. 17.
    Hájek, A. (2003). What conditional probability could not be. Synthese, 137, 273–323.CrossRefGoogle Scholar
  18. 18.
    Hájek, A. (2007). Interpretations of probability. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy. http://plato.stanford.edu/archives/fall2007/entries/probability-interpret/.
  19. 19.
    Jeffrey, R.. (1971). Probability measures and integrals. In R. Carnap, & R. Jeffrey (Eds.), Studies in inductive logic and probability (Vol. 1, pp. 167–223). Berkeley: University of California Press.Google Scholar
  20. 20.
    Jeffrey, R.. (1992). Probability and the art of judgment. Cambridge University Press.Google Scholar
  21. 21.
    Keynes, J. M.. (1921). A treatise on probability. Macmillan. Reprinted with corrections 1948.Google Scholar
  22. 22.
    Kolmogorov, A. N. (1933). Grundbegriffe der wahrscheinlichkeitsrechnung. English translation: Foundations of probability. Trans. Nathan Morrison. Chelsea (1956).Google Scholar
  23. 23.
    Kyburg, Jr., H. E., & Smokler, H. E. (Eds.) (1980). Studies in subjective probability (2nd ed.). Krieger.Google Scholar
  24. 24.
    Maher, P. (1996). Subjective and objective confirmation. Philosophy of Science, 63, 149–173.CrossRefGoogle Scholar
  25. 25.
    Maher, P. (2001). Probabilities for multiple properties: The models of Hesse and Carnap and Kemeny. Erkenntnis, 55, 183–216.CrossRefGoogle Scholar
  26. 26.
    Maher, P. (2004). Probability captures the logic of scientific confirmation. In C. R. Hitchcock (Ed.), Contemporary debates in philosophy of science (pp. 69–93). Blackwell.Google Scholar
  27. 27.
    Maher, P. (2006). The concept of inductive probability. Erkenntnis, 65, 185–206.CrossRefGoogle Scholar
  28. 28.
    Maher, P. (2009). Physical probability. In C. Glymour, W. Wang, & D. Westerståhl (Eds.), Logic, methodology and philosophy of science: Proceedings of the thirteenth international congress (pp. 193–210). College Publications.Google Scholar
  29. 29.
    Pearl, J.. (1990). Jeffrey’s rule, passage of experience, and Neo-Bayesianism. In H. E. Kyburg, Jr., R. P. Loui, & G. N. Carlson (Eds.), Knowledge representation and defeasible reasoning (pp. 245–265). Kluwer.Google Scholar
  30. 30.
    Roeper, P., & Leblanc, H. (1999). Probability theory and probability logic. University of Toronto Press.Google Scholar
  31. 31.
    von Wright, G. H. (1957). The logical problem of induction (2nd ed.). Blackwell.Google Scholar
  32. 32.
    Zabell, S. L. (1997). Confirming universal generalizations. Erkenntnis, 45, 267–283.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations