Journal of Philosophical Logic

, Volume 40, Issue 1, pp 55–94 | Cite as

Inquisitive Logic

  • Ivano Ciardelli
  • Floris RoelofsenEmail author


This paper investigates a generalized version of inquisitive semantics. A complete axiomatization of the associated logic is established, the connection with intuitionistic logic and several intermediate logics is explored, and the generalized version of inquisitive semantics is argued to have certain advantages over the system that was originally proposed by Groenendijk (2009) and Mascarenhas (2009).


Inquisitive semantics Inquisitive logic Intuitionistic logic Intermediate logics Medvedev logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balogh, K. (2009). Theme with variations: A context-based analysis of focus. Ph.D. thesis, University of Amsterdam.Google Scholar
  2. 2.
    Chagrov, A., & Zakharyaschev, M. (1997). Modal logic. Oxford University Press.Google Scholar
  3. 3.
    Ciardelli, I. (2008). A generalized inquisitive semantics. Term paper, University of Amsterdam.Google Scholar
  4. 4.
    Ciardelli, I. (2009). Inquisitive semantics and intermediate logics. Master thesis, University of Amsterdam.Google Scholar
  5. 5.
    Epstein, R., Carnielli, W., D’Ottaviano, I., Krajewski, S., & Maddux, R. (1995). The semantic foundations of logic. Propositional logics (Vol. 1). Oxford University Press.Google Scholar
  6. 6.
    Grice, H. (1989). Studies in the way of words. Harvard University Press.Google Scholar
  7. 7.
    Groenendijk, J. (1999). The logic of interrogation. In T. Matthews, & D. Strolovitch (Eds.), Semantics and linguistic theory (pp. 109–126).Google Scholar
  8. 8.
    Groenendijk, J. (2008a). Inquisitive semantics and dialogue management. ESSLLI course notes.
  9. 9.
    Groenendijk, J. (2008b). Inquisitive semantics: Student version. Lecture notes for a graduate course at the University of Amsterdam.
  10. 10.
    Groenendijk, J. (2009). Inquisitive semantics: Two possibilities for disjunction. In P. Bosch, D. Gabelaia, & J. Lang (Eds.), Seventh international Tbilisi symposium on language, logic, and computation. Springer.Google Scholar
  11. 11.
    Groenendijk, J., & Roelofsen, F. (2009). Inquisitive semantics and pragmatics. In J. M. Larrazabal, & L. Zubeldia (Eds.), Meaning, content, and argument: Proceedings of the ILCLI international workshop on semantics, pragmatics, and rhetoric.
  12. 12.
    Groenendijk, J., Stokhof, M., & Veltman, F. (1996). Coreference and modality. In S. Lappin (Ed.), Handbook of contemporary semantic theory (pp. 179–216). Blackwell, Oxford.Google Scholar
  13. 13.
    Heyting, A. (1930). Die formalen regeln der intuitionistischen logik. In Sitzungberichte der preussischen akademie der wissenschaften (pp. 42–56).Google Scholar
  14. 14.
    Kolmogorov, A. (1932). Zur deutung der intuitionistischen logik. Matematische Zeitschrift, 35, 58–65.CrossRefGoogle Scholar
  15. 15.
    Kreisel, G., & Putnam, H. (1957). Eine Unableitbarkeitsbeweismethode für den intuitionistischen Aussagenkalkül. Archiv für Mathematische Logik und Grundlagenforschung, 3, 74–78.CrossRefGoogle Scholar
  16. 16.
    Maksimova, L. (1986). On maximal intermediate logics with the disjunction property. Studia Logica, 45, 69–75.CrossRefGoogle Scholar
  17. 17.
    Maksimova, L., Shetman, V., & Skvorcov, D. (1979). The impossibility of a finite axiomatization of Medvedev’s logic of finitary problems. Soviet Mathematics. Doklady, 20, 394–398.Google Scholar
  18. 18.
    Mancosu, P. (1998). From Brouwer to Hilbert: The debate on the foundations of mathematics in the 1920s. Oxford University Press.Google Scholar
  19. 19.
    Mascarenhas, S. (2009). Inquisitive semantics and logic. Master Thesis, University of Amsterdam.Google Scholar
  20. 20.
    Medvedev, J. T. (1962). Finite problems. Soviet Mathematics. Doklady, 3, 227–230.Google Scholar
  21. 21.
    Medvedev, J. T. (1966). Interpretation of logical formulas by means of finite problems. Soviet Mathematics. Doklady, 7, 857–860.Google Scholar
  22. 22.
    Miglioli, P., Moscato, U., Ornaghi, M., Quazza, S., & Usberti, G. (1989). Some results on intermediate constructive logics. Notre Dame Journal of Formal Logic, 30(4), 543–562.CrossRefGoogle Scholar
  23. 23.
    Sano, K. (2009). Sound and complete tree-sequent calculus for inquisitive logic. In Proceedings of the sixteenth workshop on logic, language, information, and computation. Available via
  24. 24.
    Stalnaker, R. (1978). Assertion. Syntax and Semantics, 9, 315–332.Google Scholar
  25. 25.
    ten Cate, B., & Shan, K. (2007). Axiomatizing Groenendijk’s logic of interrogation. In M. Aloni, A. Butler, & P. Dekker (Eds.), Questions in dynamic semantics (pp. 63–82). Elsevier.Google Scholar
  26. 26.
    van Benthem, J. (2009). The information in intuitionistic logic. Synthese, 167(2), 251–270.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute for Logic, Language, and ComputationUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations