Journal of Philosophical Logic

, Volume 39, Issue 4, pp 395–423 | Cite as

Towards a Theory of Limited Indeterminism in Branching Space-times

  • Thomas Müller
Open Access


Branching space-times (BST; Belnap, Synthese 92:385–434, 1992) is the most advanced formal framework for representing indeterminism. BST is however based on continuous partial orderings, while our natural way of describing indeterministic scenarios may be called discrete. This paper establishes a theorem providing a discrete data format for BST: it is proved that a discrete representation of indeterministic scenarios leading to BST models is possible in an important subclass of cases. This result enables the representation of limited indeterminism in BST and hopefully paves the way for the representation of substances with capacities in that framework.


Modality Indeterminism Agency 


  1. 1.
    Belnap, N. (1992). Branching space-time. Synthese, 92, 385–434.CrossRefGoogle Scholar
  2. 2.
    Belnap, N. (2002). EPR-like “funny business” in the theory of branching space-times. In T. Placek, & J. Butterfield (Eds.), Non-locality and modality (pp. 293–315). Dordrecht: Kluwer.Google Scholar
  3. 3.
    Belnap, N. (2003). No-common-cause EPR-like funny business in branching space-times. Philosophical Studies, 114, 199–221.CrossRefGoogle Scholar
  4. 4.
    Belnap, N. (2005). A theory of causation: Causae causantes (originating causes) as inus conditions in branching space-times. British Journal for the Philosophy of Science, 56, 221–253.CrossRefGoogle Scholar
  5. 5.
    Belnap, N. (2007). From Newtonian determinism to branching-space-time indeterminism. In T. Müller (Ed.), Logik, Begriffe, Prinzipien des Handelns (pp. 18–36). Paderborn: Mentis.Google Scholar
  6. 6.
    Belnap, N. (2010). Prolegomena to norms in branching space-times. Journal of Applied Logic (forthcoming).Google Scholar
  7. 7.
    Belnap, N., & Perloff, M. (1988). Seeing to it that: A canonical form for agentives. Theoria, 54(3), 175–199.Google Scholar
  8. 8.
    Belnap, N., Perloff, M., & Xu, M. (2001). Facing the future. Agents and choices in our indeterminist world. Oxford: Oxford University Press.Google Scholar
  9. 9.
    Belnap, N., & Szabó, L. (1996). Branching space-time analysis of the GHZ theorem. Foundations of Physics, 26(8), 989–1002.CrossRefGoogle Scholar
  10. 10.
    Butterfield, J. (2006). Against pointillisme about mechanics. British Journal for the Philosophy of Science, 57(4), 709–753.CrossRefGoogle Scholar
  11. 11.
    Earman, J. (2008). Pruning some branches from branching space-times. In D. Dieks (Ed.), The ontology of spacetime II (pp. 187–205). Amsterdam: Elsevier.CrossRefGoogle Scholar
  12. 12.
    Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47(10), 777–780.CrossRefGoogle Scholar
  13. 13.
    Lewis, D. (1986). On the plurality of worlds. Oxford: Blackwell.Google Scholar
  14. 14.
    McCall, S. (1990). Choice trees. In J. Dunn, & A. Gupta (Eds.), Truth or consequences. Essays in honor of Nuel Belnap (pp. 231–244). Dordrecht: Kluwer.Google Scholar
  15. 15.
    Müller, T. (2002). Branching space-time, modal logic and the counterfactual conditional. In T. Placek, & J. Butterfield (Eds.), Non-locality and modality (pp. 273–291). Dordrecht: Kluwer.Google Scholar
  16. 16.
    Müller, T. (2005). Probability theory and causation: A branching space-times analysis. British Journal for the Philosophy of Science, 56, 487–520.CrossRefGoogle Scholar
  17. 17.
    Müller, T. (2007). Branch dependence in the “consistent histories” approach to quantum mechanics. Foundations of Physics, 37(2), 253–276.CrossRefGoogle Scholar
  18. 18.
    Müller, T., Belnap, N., & Kishida, K. (2008). Funny business in branching space-times: Infinite modal correlations. Synthese, 164, 141–159.CrossRefGoogle Scholar
  19. 19.
    Müller, T., & Placek, T. (2001). Against a minimalist reading of Bell’s theorem: Lessons from fine. Synthese, 128, 343–379.CrossRefGoogle Scholar
  20. 20.
    Placek, T. (2000). Stochastic outcomes in branching space-times. British Journal for the Philosophy of Science, 51, 445–475.CrossRefGoogle Scholar
  21. 21.
    Placek, T. (2010). On propensity-frequentist models for stochastic phenomena with applications to Bell’s theorem. In T. Czarnecki, K. Kijania-Placek, V. Kukushkina, & J. Woleński (Eds.), The analytic way. Proceedings of the 6th European congress on analytic philosophy. London: College Publications.Google Scholar
  22. 22.
    Placek, T., & Wroński, L. (2009). On infinite EPR-like correlations. Synthese, 167, 1–32.CrossRefGoogle Scholar
  23. 23.
    Prior, A. N. (1968). Papers on time and tense. Chapter 6: Limited indeterminism (pp. 59–65). Oxford: Oxford University Press.Google Scholar
  24. 24.
    Sellars, W. (1962). Philosophy and the scientific image of man. In R. Colodny (Ed.), Frontiers of science and philosophy (pp. 35–78). Pittsburgh: University of Pittsburgh Press.Google Scholar
  25. 25.
    Wroński, L., & Placek, T. (2009). On Minkowskian branching structures. Studies in History and Philosophy of Modern Physics, 40, 251–258.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of PhilosophyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations