Journal of Philosophical Logic

, Volume 39, Issue 5, pp 473–510 | Cite as

The Paradox of Inference and the Non-Triviality of Analytic Information

Article

Abstract

The classical theory of semantic information (ESI), as formulated by Bar-Hillel and Carnap in 1952, does not give a satisfactory account of the problem of what information, if any, analytically and/or logically true sentences have to offer. According to ESI, analytically true sentences lack informational content, and any two analytically equivalent sentences convey the same piece of information. This problem is connected with Cohen and Nagel’s paradox of inference: Since the conclusion of a valid argument is contained in the premises, it fails to provide any novel information. Again, ESI does not give a satisfactory account of the paradox. In this paper I propose a solution based on the distinction between empirical information and analytic information. Declarative sentences are informative due to their meanings. I construe meanings as structured hyperintensions, modelled in Transparent Intensional Logic as so-called constructions. These are abstract, algorithmically structured procedures whose constituents are sub-procedures. My main thesis is that constructions are the vehicles of information. Hence, although analytically true sentences provide no empirical information about the state of the world, they convey analytic information, in the shape of constructions prescribing how to arrive at the truths in question. Moreover, even though analytically equivalent sentences have equal empirical content, their analytic content may be different. Finally, though the empirical content of the conclusion of a valid argument is contained in the premises, its analytic content may be different from the analytic content of the premises and thus convey a new piece of information.

Keywords

Analytic information Empirical information Paradox of inference Transparent intensional logic Construction Hyperintension Structured meaning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S. (2008). Information, processes and games. In P. Adriaans & J. van Benthem (Eds.), Philosophy of information: Handbook of the philosophy of science (pp. 483–550). Amsterdam: Elsevier Science.CrossRefGoogle Scholar
  2. 2.
    Allo, P. (2007). Logical pluralism and semantic information. Journal of Philosophical Logic, 36, 659–694.CrossRefGoogle Scholar
  3. 3.
    Anderson, C. A. (1998). Alonzo Church’s contributions to philosophy and intensional logic. The Bulletin of Symbolic Logic, 4(2), 129–171.CrossRefGoogle Scholar
  4. 4.
    Bar-Hillel, Y., & Carnap, R. (1952). An outline of a theory of semantic information, rep. in Bar-Hillel (1964) (ed.), Language and Information (pp. 221–274). Addison-Wesley, Reading, MA.Google Scholar
  5. 5.
    Bolzano, B. (1837). Wissenschaftslehre I, II. Sulzbach.Google Scholar
  6. 6.
    Carnap, R. (1947). Meaning and necessity. Chicago University Press.Google Scholar
  7. 7.
    Church, A. (1941). The calculi of lambda conversion. Princeton: Princeton University Press.Google Scholar
  8. 8.
    Church, A. (1954). Intensional isomorphism and identity of belief. Philosophical Studies, 5, 65–73.CrossRefGoogle Scholar
  9. 9.
    Cohen, M. R., & Nagel, E. (1934). An introduction to logic and scientific method. London: Routledge and Kegan Paul.Google Scholar
  10. 10.
    Cook, S. A. (1971). The complexity of theorem-proving procedures. In: STOC ’71: Proceedings of the third annual ACM symposium on Theory of computing (pp. 151–158). New York: ACM.Google Scholar
  11. 11.
    Cresswell, M. J. (1985). Structured meanings. Cambridge, Mass: MIT.Google Scholar
  12. 12.
    Duží, M. (1992). Semantic information connected with data. In J. Biskup & R. Hull (Eds.), Database theory ICDT’92 (pp. 376–390). Berlin: Springer, Lecture Notes in Computer Science.Google Scholar
  13. 13.
    Duží, M. (2006). Informativnost matematických či analyticky pravdivých tvrzení a paradox inference’ (in Czech). Filosofický časopis, 54(4), 501–522.Google Scholar
  14. 14.
    Duží, M. (2009). Topic-focus articulation from the semantic point of view, In A. Gelbukh (Ed.), Computational linguistics and intelligent text processing (pp. 220–232). Springer, LNCS 5449.Google Scholar
  15. 15.
    Duží, M., & Materna, P. (2004). A procedural theory of concepts and the problem of the synthetic a priori. Korean Journal of Logic, 7, 1–22.Google Scholar
  16. 16.
    Duží, M., & Materna, P. (2005). Logical form. In G. Sica (Ed.), Essays on the foundations of mathematics and logic, vol. 1 (pp. 115–153). Monza: Polimetrica International Scientific.Google Scholar
  17. 17.
    Duží, M., Jespersen B., Materna P. (2010). Procedural semantics for hyperintensional logic; Foundations and applications of transparent intensional logic. Series Logic, Epistemology and the Unity of Science. Berlin: Springer.Google Scholar
  18. 18.
    D’Agostino, M., & Floridi, L. (2009). The enduring scandal of deduction. Is propositional logic really uninformative? Synthese, 167, 271–315.CrossRefGoogle Scholar
  19. 19.
    Floridi, L. (2004). Outline of a theory of strongly semantic information. Minds & Machines, 14, 197–222.CrossRefGoogle Scholar
  20. 20.
    Floridi, L. (2005). ‘Is information meaningful data’? Philosophy and Phenomenological Research, 70, 351–370.CrossRefGoogle Scholar
  21. 21.
    Frege, G. (1892). Über Sinn and Bedeutung. Zeitschrift für Philosophie und philosophische Kritik, 100, 25–50.Google Scholar
  22. 22.
    Gärdenfors, P. (1988): Knowledge in flux: Modelling the dynamics of epistemic states, A Bradford Book, Cambridge Massachusetts: The MIT.Google Scholar
  23. 23.
    Hintikka, J. (1970). Surface information and depth information. In J. Hintikka & O. Suppes (Eds.), Information and inference (pp. 263–297). Reidel: Dordrecht.Google Scholar
  24. 24.
    Jespersen, B. (2003). Why the tuple theory of structured propositions isn’t a theory of structured propositions. Philosophia, 31, 171–183.CrossRefGoogle Scholar
  25. 25.
    Jespersen, B. (2005). Explicit intensionalisation, anti-actualism, and how Smith’s murderer might not have murdered Smith. Dialectica, 59, 285–314.CrossRefGoogle Scholar
  26. 26.
    Jespersen, B. (2008). Predication and extensionalization. Journal of Philosophical Logic, 37, 479–499.CrossRefGoogle Scholar
  27. 27.
    Jespersen, B. (2010). Hyperintensions and procedural isomorphism: Alternative (½). In The Analytical Way. Proceedings of the 6th European Congress of Analytic Philosophy. Tadeusz Czarnecki, K. Kijania-Placek, O. Poller, and J. Woleński (eds.), College Publications, London, pp. 301–322.Google Scholar
  28. 28.
    Johnson-Laird, P. N. (1977). Procedural semantics. Cognition, 5, 189–214.CrossRefGoogle Scholar
  29. 29.
    Kaufmann, W. (1906). ‘Über die Konstitution des Elektrons’, Annalen der Physik, 19, 487–553, <http://gallica.bnf.fr/ark:/12148/bpt6k15326w/f497.chemindefer>
  30. 30.
    King, J. C. (1995). Structured propositions and complex predicates. Nous, 29(4), 516–535.CrossRefGoogle Scholar
  31. 31.
    King, J. C. (2001). Structured propositions, http://plato.stanford.edu/entries/propositionsstructured/, version as of 8 August 2001.
  32. 32.
    Materna, P. (1998). Concepts and objects. Acta Philosophica Fennica, 63, Helsinki.Google Scholar
  33. 33.
    Materna, P. (2004). Conceptual systems. Berlin: Logos Verlag.Google Scholar
  34. 34.
    Materna, P., & Duží, M. (2005). The Parmenides principle. Philosophia, 32, 155–180.CrossRefGoogle Scholar
  35. 35.
    Mates, B. (1950). ‘Synonymity’, in: University of California Publications in Philosophy, 25, 201–226.Google Scholar
  36. 36.
    Moschovakis, Y. N. (1994). Sense and denotation as algorithm and value. In J. Väänänen & J. Oikkonen (Eds.), Lecture Notes in Logic (Vol. 2, pp. 210–249). Berlin: Springer.Google Scholar
  37. 37.
    Moschovakis, Y. N. (2006). A logical calculus of meaning and synonymy. Linguistics and Philosophy, 29, 27–89.CrossRefGoogle Scholar
  38. 38.
    Sequoiah-Grayson, S. (2006). Information flow and impossible situations. Logique et Analyse, 196, 371–398.Google Scholar
  39. 39.
    Sequoiah-Grayson, S. (2008). The scandal of deduction (Hintikka on the information yield of deductive inferences). Journal of Philosophical Logic, 37(1), 67–94.CrossRefGoogle Scholar
  40. 40.
    Sundholm, G. (1997). Inference vs. consequence. In T. Childers (Ed.), The logica yearbook 1997 (pp. 26–36). Prague 1998.Google Scholar
  41. 41.
    Tichý, P. (1966). K explikaci pojmu obsah věty. Filosofický časopis 14, pp. 364–372. Translation ‘On explication of the notion “the content of a sentence’, reprinted in: Tichý (2004), pp. 53–68.Google Scholar
  42. 42.
    Tichý, P. (1988). The foundations of Frege’s logic. Berlin: De Gruyter.Google Scholar
  43. 43.
    Tichý, P. (2004). Collected papers in logic and philosophy. In V. Svoboda, B. Jespersen, C. Cheyne (Eds.), Prague: Filosofia, Czech Academy of Sciences, and Dunedin: University of Otago Press.Google Scholar
  44. 44.
    van Benthem, J., & Martinez, M.-C. (2008). The stories of logic and information. In P. Adriaans & J. van Benthem (Eds.), Philosophy of information: handbook of the philosophy of science (pp. 217–280). Amsterdam: Elsevier Science.CrossRefGoogle Scholar
  45. 45.
    Wagner, S. J. (1986). California semantics meets the Great Fact. Notre Dame Journal of Formal Logic, 27(3), 430–455.CrossRefGoogle Scholar
  46. 46.
    Wittgenstein, L. (1922). Tractatus Logico-Philosophicus. London: Routlege.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Computer Science FEIVSB-Technical University OstravaOstravaCzech Republic

Personalised recommendations