Advertisement

Journal of Philosophical Logic

, Volume 39, Issue 2, pp 139–158 | Cite as

A Routley-Meyer Type Semantics for Relevant Logics Including Br Plus the Disjunctive Syllogism

  • Gemma Robles
  • José M. Méndez
Article

Abstract

Routley-Meyer type ternary relational semantics are defined for relevant logics including Routley and Meyer’s basic logic B plus the reductio rule \( \vdash A\rightarrow \lnot A\Rightarrow \vdash \lnot A\) and the disjunctive syllogism. Standard relevant logics such as E and R (plus γ) and Ackermann’s logics of ‘strenge Implikation’ Π and Π are among the logics considered.

Keywords

Relevant logics Disjunctive syllogism Routley-Meyer semantics Ackermann’s Π and Π 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackermann, W. (1956). Begründung einer strengen Implikation. Journal of Symbolic Logic, 21/2, 113–128.Google Scholar
  2. 2.
    Anderson, A. R., & Belnap, N. D. Jr. (1975). Entailment. The logic of relevance and necessity (Vol. I). Princeton: Princeton University Press.Google Scholar
  3. 3.
    Anderson, A. R., Belnap, N. D. Jr., & Dunn, J. M. (1992). Entailment. The logic of relevance and necessity (Vol. II). Princeton; Princeton University Press.Google Scholar
  4. 4.
    Bimbó, K. (2007). Relevance logics. In D. Jacquette (Ed.), Philosophy of logic, Handbook of the philosophy of sciences (Vol. 5, pp. 723–789).Google Scholar
  5. 5.
    Bimbó, K., & Dunn, J. M. (2008). Generalized galois logics: Relational semantics of nonclassical logical Calculi. CSLI Lecture Notes (Vol. 188). Standford: CSLI.Google Scholar
  6. 6.
    Brady, R. T. (1984). Natural deduction systems for some quantified relevant logics. Logique et Analyse, 27, 355–377.Google Scholar
  7. 7.
    Brady, R. T. (2003). Semantic decision procedures for some relevant logics. Australasian Journal of Logic, 1, 4–27.Google Scholar
  8. 8.
    Dunn, J. M. (1970). Algebraic completeness results for R-Mingle and its extensions. Journal of Symbolic Logic, 35, 1–13.CrossRefGoogle Scholar
  9. 9.
    Dunn, J. M. (1986). Relevance logic and entailment. In D. Gabbay, & F. Guenthner (Eds.), Handbook of Philosophical Logic (Vol. 3, pp. 117–229). Dordrecht: D. Reidel.Google Scholar
  10. 10.
    Dunn, J. M. (1991). Gaggle theory: An abstraction of Galois connections and residuation with applications to negation, implication and various logical operators. In J. van Eijck (Ed.), Logics in AI: European Workshop JELIA ‘90 (LNCS 478) (pp. 31–51). New York: Springer.Google Scholar
  11. 11.
    Dunn, J. M. (2001). A representation of relation algebras using Routley-Meyer frames. In C. A. Anderson, & M. Zeleny (Eds.), Logic, meaning and computation. Essays in memory of Alonzo Church (pp. 77–108). Dordrecht: Kluwer.Google Scholar
  12. 12.
    Dunn, J. M., & Restall, G. (2002). Relevance logics. In D. Gabbay, & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 6, pp. 1–128). Dordrecht: Kluwer.Google Scholar
  13. 13.
    Mares, E. D., & Meyer, R. K. (2001). Relevant logics. In L. Goble (Ed.), The blackwell guide to philosophycal logic (pp. 280–308). Oxford: Blackwell.Google Scholar
  14. 14.
    Meyer, R. K. (1976). Ackermann, Takenti and Schnitt: γ for higher relevant logics. Bulletin of the Section Logic, 5, 138–174.Google Scholar
  15. 15.
    Meyer, R. K., & Dunn, J. M. (1969). E, R and γ. Journal of Symbolic Logic, 34, 460–474.CrossRefGoogle Scholar
  16. 16.
    Meyer, R. K., & Routley, R. (1972). Algebraic analysis of entailment I. Logique et Analyse, 15, 407–428.Google Scholar
  17. 17.
    Robles, G., & Méndez, J. M. (2004). The logic B and the reductio axioms. Bulletin of the Section of Logic, 33/2, 87–94.Google Scholar
  18. 18.
    Robles, G., & Méndez, J. M. (2008). The basic constructive logic for a weak sense of consistency. Journal of Logic Language and Information, 17/1, 89–107.Google Scholar
  19. 19.
    Robles, G., & Méndez, J. M. (submitted). A Routley and Meyer semantics for relevant logics including TWR plus the disjunctive syllogism.Google Scholar
  20. 20.
    Routley, R., & Meyer, R. K. (1972). Semantics of entailment III. Journal of Philosophical Logic, 1, 192–208.CrossRefGoogle Scholar
  21. 21.
    Routley, R., & Meyer, R. K. (1973). Semantics of entailment I. In H. Leblanc (Ed.), Truth, syntax and modality (pp. 199–243). Amsterdam: North Holland.CrossRefGoogle Scholar
  22. 22.
    Routley, R., Meyer, R. K., Plumwood, V., & Brady, R. T. (1982a). Relevant logics and their rivals (Vol. 1). Atascadero: Ridgeview.Google Scholar
  23. 23.
    Routley, R., Meyer, R. K., Plumwood, V., & Brady R. T. (1982b). Semantics of entailment IV. In R. Routley et al. (Eds.), Relevant logics and their rivals, Appendix I (Vol. 1). Atascadero: Ridgeview.Google Scholar
  24. 24.
    Slaney, J. (1987). Reduced models for relevant logics without WI. Notre Dame Journal of Formal Logic, 28, 395–407.CrossRefGoogle Scholar
  25. 25.
    Slaney, J. (1995). MaGIC, matrix generator for implication connectives: Version 2.1, notes and guide. Canberra: Australian National University. http://users.rsise.anu.edu.au/~jks.

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Dpto. de Historia y Filosofía de la CC, la Ed. y el Lenguaje, Facultad de FilosofíaUniversidad de La LagunaLa LagunaSpain
  2. 2.Universidad de Salamanca Campus Unamuno, Edificio FESSalamancaSpain

Personalised recommendations