Journal of Philosophical Logic

, Volume 38, Issue 2, pp 229–247 | Cite as

‘Now’ and ‘Then’ in Tense Logic



According to Hans Kamp and Frank Vlach, the two-dimensional tense operators “now” and “then” are ineliminable in quantified tense logic. This is often adduced as an argument against tense logic, and in favor of an extensional account that makes use of explicit quantification over times. The aim of this paper is to defend tense logic against this attack. It shows that “now” and “then” are eliminable in quantified tense logic, provided we endow it with enough quantificational structure. The operators might not be redundant in some other systems of tense logic, but this merely indicates a lack of quantificational resources and does not show any deep-seated inability of tense logic to express claims about time. The paper closes with a brief discussion of the modal analogue of this issue, which concerns the role of the actuality operator in quantified modal logic.


Quantified tense logic “Now” and “then” Actuality operator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boolos, G. (1998). Logic, Logic, and Logic. Cambridge, Mass: Harvard University Press.Google Scholar
  2. 2.
    Bostock, D. (1988). Necessary truth and a priori truth. Mind, 97, 343–379.CrossRefGoogle Scholar
  3. 3.
    Bricker, P. (1989). Quantified modal logic and the plural de re. In P. French, T. Uehling, & H. Wettstein (Eds.), Midwest Studies in Philosophy (Vol. XIV, pp. 372–394). Minneapolis: University of Minnesota Press.Google Scholar
  4. 4.
    Burgess, J. P. (1984). Basic tense logic. In Gabbay and Guenther [10] (pp. 89–133).Google Scholar
  5. 5.
    Burgess, J. P., Hazen, A., & Lewis, D. (1991). Appendix on pairing. In D. Lewis (Ed.), Parts of Classes (pp. 121–149). Oxford: Blackwell.Google Scholar
  6. 6.
    Cresswell, M. J. (1990). Entities and Indices. Dordrecht: Kluwer.Google Scholar
  7. 7.
    Crossley, J., & Humberstone, L. (1977). The logic of ‘actually’. Reports on Mathematical Logic, 8, 11–29.Google Scholar
  8. 8.
    Forbes, G. (1989). Languages of Possibility. Oxford: Blackwell.Google Scholar
  9. 9.
    Gabbay, D. (1975). Model theory for tense logics. Annals of Mathematical Logic, 8, 185–236.CrossRefGoogle Scholar
  10. 10.
    Gabbay, D., & Guenther, F. (Eds.) (1984). Handbook of Philosophical Logic (Vol. II). Dordrecht: Kluwer.Google Scholar
  11. 11.
    Garson, J. (2001). Quantification in modal logic. In Gabbay and Guenther [10] (pp. 249–307).Google Scholar
  12. 12.
    Hazen, A. (1976). Expressive completeness in modal languages. Journal of Philosophical Logic, 5, 25–46.CrossRefGoogle Scholar
  13. 13.
    Hazen, A. (1978). The eliminability of the actuality operator in propositional modal logic. Notre Dame Journal of Formal Logic, 19, 617–622.CrossRefGoogle Scholar
  14. 14.
    Hazen, A. (1990). Actuality and quantification. Notre Dame Journal of Formal Logic, 31, 498–508.CrossRefGoogle Scholar
  15. 15.
    Hodes, H. (1984). Axioms for actuality. Journal of Philosophical Logic, 13, 27–34.CrossRefGoogle Scholar
  16. 16.
    Hodes, H. (1984). Some theorems on the expressive limitations of modal languages. Journal of Philosophical Logic, 13, 13–26.CrossRefGoogle Scholar
  17. 17.
    Kamp, H. (1968). Tense logic and the theory of linear orders. Ph.D. thesis, University of California, Los Angeles.Google Scholar
  18. 18.
    Kamp, H. (1971). Formal properties of ‘now’. Theoria, 37, 227–273.CrossRefGoogle Scholar
  19. 19.
    Lewis, D. (2004). Tensed quantifiers. In D. Zimmerman (Ed.), Oxford Studies in Metaphysics (Vol. I, pp. 3–14). Oxford: Clarendon Press.Google Scholar
  20. 20.
    Meyer, U. (2005). The presentist’s dilemma. Philosophical Studies, 122, 213–225.CrossRefGoogle Scholar
  21. 21.
    Meyer, U. (2006). Worlds and times. Notre Dame Journal of Formal Logic, 47, 25–37.CrossRefGoogle Scholar
  22. 22.
    Meyer, U. (2008). Times in tense logic. Unpublished manuscript.Google Scholar
  23. 23.
    Prior, A. (1957). Time and Modality. Oxford: Clarendon Press.Google Scholar
  24. 24.
    Prior, A. (1968). “Now.” Noûs, 2, 101–119. See also: Prior, A. (1968). “Now” corrected and condensed. Noûs, 2, 411–412.Google Scholar
  25. 25.
    Quine, W. V. (1951). Ontology and ideology. Philosophical Studies, 2, 11–15.CrossRefGoogle Scholar
  26. 26.
    Quine, W. V. (1980). On what there is. In From a Logical Point of View (2nd ed., pp. 1–19). Cambridge, Mass: Harvard University Press.Google Scholar
  27. 27.
    Segerberg, K. (1973). Two-dimensional modal logic. Journal of Philosophical Logic, 2, 77–97.CrossRefGoogle Scholar
  28. 28.
    Shapiro, S. (1991). Foundations without Foundationalism. Oxford: Clarendon Press.Google Scholar
  29. 29.
    Thomason, R. (1969). Modal logic and metaphysics. In K. Lambert (Ed.), The Logical Way of Doing Things (pp. 119–146). New Haven: Yale University Press.Google Scholar
  30. 30.
    van Benthem, J. (1977). Tense logic and standard logic. Logique et Analyse, 80, 395–437.Google Scholar
  31. 31.
    Vlach, F. (1973). ‘Now’ and ‘then’: A formal study in the logic of tense anaphora. Ph.D. thesis, University of California, Los Angeles.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Philosophy DepartmentColgate UniversityHamiltonUSA

Personalised recommendations