Journal of Philosophical Logic

, Volume 38, Issue 2, pp 179–227 | Cite as

Inexact Knowledge with Introspection

Article

Abstract

Standard Kripke models are inadequate to model situations of inexact knowledge with introspection, since positive and negative introspection force the relation of epistemic indiscernibility to be transitive and euclidean. Correlatively, Williamson’s margin for error semantics for inexact knowledge invalidates axioms 4 and 5. We present a new semantics for modal logic which is shown to be complete for K45, without constraining the accessibility relation to be transitive or euclidean. The semantics corresponds to a system of modular knowledge, in which iterated modalities and simple modalities are not on a par. We show how the semantics helps to solve Williamson’s luminosity paradox, and argue that it corresponds to an integrated model of perceptual and introspective knowledge that is psychologically more plausible than the one defended by Williamson. We formulate a generalized version of the semantics, called token semantics, in which modalities are iteration-sensitive up to degree n and insensitive beyond n. The multi-agent version of the semantics yields a resource-sensitive logic with implications for the representation of common knowledge in situations of bounded rationality.

Keywords

Inexact knowledge Epistemic logic Kripke semantics Token semantics Centered semantics Introspection Luminosity Vagueness Margin for error Common knowledge Bounded rationality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blackburn, P., de Rijke M., & Venema, Y. (1999). Modal Logic. Cambridge tracts in theoretical computer science 53, Cambridge University Press.Google Scholar
  2. 2.
    Bonnay, D., & Égré, P.: A non-standard semantics for inexact knowledge with introspection. In R. Parikh & S. Artemov (Eds.), Proceedings of the ESSLLI 2006 workshop rationality and knowledge.Google Scholar
  3. 3.
    Bonnay, D., & Égré, P. (2007). Vagueness and introspection. Prague Colloquium on Reasoning about Vagueness and Probability, manuscript, IJN.Google Scholar
  4. 4.
    Bonnay, D., & Égré, P. (2008) Margins for error in context. In M. Garcia-Carpintero & M. Këlbel (Eds.), Relative Truth (pp. 103–107). Oxford: Oxford UP.Google Scholar
  5. 5.
    van Ditmarsch, H., van der Hoek, W., & Kooi, B. (2003). Lecture Notes on Dynamic Epistemic Logic, ESSLLI 2003, Vienna also available as Dynamic Epistemic Logic, Synthese Library, (Vol. 337). Springer, 2007.Google Scholar
  6. 6.
    Dokic, J., & Égré, P. (2008). Margin for error and the transparency of knowledge. Synthese doi:10.1007/s11229-007-9245-y.
  7. 7.
    Égré, P. (2008). Reliability, margin for error and self-knowledge. In D. Pritchard & V. Hendricks (Eds.), New waves in epistemology (pp. 215–250). Palgrave Macmillan.Google Scholar
  8. 8.
    Fagin, R., Halpern, J., Moses, Y., & Vardi, M. (1995). Reasoning about knowledge. Cambridge, MA: MIT Press.Google Scholar
  9. 9.
    Gabbay, D. (2002). A theory of hypermodal logics: Mode shifting in modal logic. Journal of Philosophical Logic, 31, 211–243.CrossRefGoogle Scholar
  10. 10.
    Halpern, J. (2004). Intransitivity and vagueness. In Proceedings of the ninth international conference on principles of knowledge representation and reasoning (KR 2004) (pp. 121–129).Google Scholar
  11. 11.
    Kamp, H. (1971). Formal properties of “Now”. Theoria, 37, 227–273.CrossRefGoogle Scholar
  12. 12.
    Mongin, P. (2002). “Modèles d’Information et Théorie de la Connaissance”. Course Notes, Ecole Polytechnique, Feb. 2002, Laboratoire d’Econométrie.Google Scholar
  13. 13.
    Osborne, M. J., & Rubinstein, A. (1994). A course in game theory. Cambridge, MA: MIT Press.Google Scholar
  14. 14.
    Rubinstein, A. (1989). The electronic mail game: Strategic behavior under ‘almost common knowledge’. American Economic Review, 79, 385–391.Google Scholar
  15. 15.
    Williamson, T. (1992). Inexact knowledge. Mind, 101, 217–242.CrossRefGoogle Scholar
  16. 16.
    Williamson, T. (1992). An alternative rule of disjunction in modal logic. Notre Dame Journal of Formal Logic, 33(1), 89–100.CrossRefGoogle Scholar
  17. 17.
    Williamson, T. (1994). Vagueness. London: Routledge.Google Scholar
  18. 18.
    Williamson, T. (2000). Knowledge and its limits. Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Département d’Etudes Cognitives, IHPSTEcole Normale SupérieureParisFrance
  2. 2.Département d’Etudes Cognitives, Institut Jean-Nicod, EHESS/ENS/CNRSEcole Normale SupérieureParisFrance

Personalised recommendations