Journal of Philosophical Logic

, Volume 37, Issue 4, pp 387–406


  • Philippe Balbiani
  • Andreas Herzig
  • Nicolas Troquard


We propose two alternatives to Xu’s axiomatization of Chellas’s STIT. The first one simplifies its presentation, and also provides an alternative axiomatization of the deliberative STIT. The second one starts from the idea that the historic necessity operator can be defined as an abbreviation of operators of agency, and can thus be eliminated from the logic of Chellas’s STIT. The second axiomatization also allows us to establish that the problem of deciding the satisfiability of a STIT formula without temporal operators is NP-complete in the single-agent case, and is NEXPTIME-complete in the multiagent case, both for the deliberative and Chellas’s STIT.

Key words

axiomatization complexity logic of agency STIT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blackburn, P., de Rijke, M. and Venema, Y: Modal Logic. Cambridge University Press, 2001.Google Scholar
  2. 2.
    Balbiani, P., Gasquet, O., Herzig, A., Schwarzentruber, F. and Troquard, N. Coalition games over Kripke semantics: expressiveness and complexity, in Dégremont, C, Keiff, L. and Rückert, H. (eds.), Festschrift in Honour of Shahid Rahman. College Publications, 2008, in press.Google Scholar
  3. 3.
    Broersen, J., Herzig, A. and Troquard, N.: Normal Coalition Logic and its conformant extension, in Samet, D. (ed.), Theoretical Aspects of Rationality and Knowledge (TARK), Presses universitaires de Louvain, Brussels, 2007, pp. 91–101.Google Scholar
  4. 4.
    Belnap, N., Perloff, M. and Xu, M.: Facing the Future: agents and choices in our indeterminist world. Oxford, 2001.Google Scholar
  5. 5.
    Chellas, B.: The Logical Form of Imperatives. PhD thesis, Philosophy Department, Stanford University, 1969.Google Scholar
  6. 6.
    Chellas, B.: Time and modality in the logic of agency. Studia Logica 51(3/4) (1992) 485–518.CrossRefGoogle Scholar
  7. 7.
    Dégremont, C.: Dialogical Deliberative Stit. Master’s thesis, Philosophy Department, University of Lille 3, 2006.Google Scholar
  8. 8.
    Gabbay, D., Kurucz, A., Wolter, F. and Zakharyaschev, M.: Many-Dimensional Modal Logics: Theory and Applications. Number 148 in Studies in Logic and the Foundations of Mathematics. Elsevier, North-Holland, 2003.Google Scholar
  9. 9.
    Horty, J. and Belnap, N, Jr.: The deliberative stit: A study of action, omission, and obligation. Journal of Philosophical Logic 24(6) (1995), 583–644.CrossRefGoogle Scholar
  10. 10.
    Marx, M.: Complexity of products of modal logics. Journal of Logic and Computation 9 (2) (1999), 221–238.CrossRefGoogle Scholar
  11. 11.
    Marx, M. and Mikulas, S.: Products, or how to create modal logics of high complexity. Logic Journal of the IGPL 9(2001), 77–88.CrossRefGoogle Scholar
  12. 12.
    Pauly, M.: A modal logic for coalitional power in games. Journal of Logic and Computation 12(1) (2002), 149–166.CrossRefGoogle Scholar
  13. 13.
    Troquard, N:. Independent agents in branching time: towards a unified framework for reasoning about multiagent systems. PhD thesis, Université Paul Sabatier, Toulouse and Università degli studi di Trento, July 2007.Google Scholar
  14. 14.
    Wansing, H.: Tableaux for multi-agent deliberative-STIT logic, in Governatori, G., Hodkinson, I. and Venema, Y. (eds.), Advances in Modal Logic, Volume 6. King’s College Publications, 2006, pp. 503–520.Google Scholar
  15. 15.
    Wölfl, S.: Propositional Q-logic. Journal of Philosical Logic 31 (2002), 387–414.CrossRefGoogle Scholar
  16. 16.
    Xu, M.: Axioms for deliberative STIT. Journal of Philosophical Logic 27 (1998), 505–552.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Philippe Balbiani
    • 1
  • Andreas Herzig
    • 1
  • Nicolas Troquard
    • 1
  1. 1.Institut de Recherche en Informatique de Toulouse (IRIT)ToulouseFrance

Personalised recommendations