Journal of Philosophical Logic

, Volume 36, Issue 2, pp 227–247 | Cite as

Steps Toward a Computational Metaphysics

  • Branden Fitelson
  • Edward N. Zalta


In this paper, the authors describe their initial investigations in computational metaphysics. Our method is to implement axiomatic metaphysics in an automated reasoning system. In this paper, we describe what we have discovered when the theory of abstract objects is implemented in prover9 (a first-order automated reasoning system which is the successor to otter). After reviewing the second-order, axiomatic theory of abstract objects, we show (1) how to represent a fragment of that theory in prover9’s first-order syntax, and (2) how prover9 then finds proofs of interesting theorems of metaphysics, such as that every possible world is maximal. We conclude the paper by discussing some issues for further research.

Key words

automated reasoning axiomatic metaphysics computational metaphysics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boyer, R. and Moore, J.: 1979, A Computational Logic, Academic, New York (Harcourt Brace Jovanovich, ACM Monograph Series).Google Scholar
  2. Huet, G.: 1973, The undecidability of unification in third order logic, Information and Control 22(3), 257–267.CrossRefGoogle Scholar
  3. Kalman, J.: 2001, Automated Reasoning with Otter, Rinton, Princeton, NJ.Google Scholar
  4. Kohlhase, M.: 1998, Higher-order automated theorem proving, in Automated Deduction – A Basis for Applications, vol. I, vol. 8 of Applied Logic Series, Kluwer, Dordrecht, pp. 431–462.Google Scholar
  5. Kowalski, R.: 1970, The case for using equality axioms in automatic demonstration, in Symposium on Automatic Demonstration (Versailles, 1968), Lecture Notes in Mathematics, vol. 125, Springer, Berlin Heidelberg New York, pp. 112–127.Google Scholar
  6. Leibniz, G.: 1890, in C. Gerhardt (ed.), Die Philosophischen Schriften von Gottfried Wilhelm Leibniz, vol. vii, Olms, Berlin.Google Scholar
  7. Linsky, B. and Zalta, E.: 1994, In defense of the simplest quantified modal logic, Philosophical Perspectives 8, 189–211.CrossRefGoogle Scholar
  8. Mally, E.: 1912, Gegenstandstheoretische Grundlagen der Logik und Logistik, Barth, Leipzig.Google Scholar
  9. Mancosu, P.: 1996, Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century, Oxford University Press, New York.Google Scholar
  10. Manzano, M.: 1996, Extensions of first order logic, in Cambridge Tracts in Theoretical Computer Science, vol. 19, Cambridge University Press, Cambridge.Google Scholar
  11. McCune, W.: 2003a, ‘Mace4 Reference Manual and Guide.’ Technical Memorandum 264, Argonne National Laboratory, Argonne, IL. URL=
  12. McCune, W.: 2003b, ‘Otter 3.3 Reference Manual.’ Technical Memorandum 263, Argonne National Laboratory, Argonne, IL. URL=
  13. McCune, W.: 2006, ‘Prover9 Manual.’ Technical Report, Argonne National Laboratory. URL=
  14. Pelletier, F. and Zalta, E.: 2000, How to say goodbye to the third man, Nous 34(2), 165–202.CrossRefGoogle Scholar
  15. Pietrzykowski, T.: 1973, A complete mechanization of second-order logic, Journal of the Assocation for Computing Machinery 20(2), 333–365.Google Scholar
  16. Portoraro, F.: 2005, Automated reasoning, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter).Google Scholar
  17. Robinson, J. A.: 1963, Theorem-proving on the computer, Journal of the Association of Computing Machinery 10, 163–174.Google Scholar
  18. Robinson, J. A.: 1965, Automatic deduction with hyper-resolution, International Journal of Computer Mathematics 1, 227–234.Google Scholar
  19. Robinson, G. and Wos, L.: 1969, Paramodulation and theorem-proving in first-order theories with equality, in Machine Intelligence, 4, American Elsevier, New York, pp. 135–150.Google Scholar
  20. Russell, B.: 1900, A Critical Exposition of the Philosophy of Leibniz, Cambridge University Press, Cambridge.Google Scholar
  21. Spinoza, B.: 1677, Ethics, in G.H.R Parkinson (ed.), Oxford University Press, Oxford (2000, translated by G.H.R Parkinson).Google Scholar
  22. Wos, L., Robinson, G., Carson, D., and Shalla, L.: 1967, The concept of demodulation in theorem proving, Journal of the Association for Computing Machinery 14(4), 698–709.Google Scholar
  23. Wos, L., Overbeek, R., Lusk, E., and Boyle, J.: 1992, Automated Reasoning: Introduction and Applications, 2nd edition, McGraw-Hill, New York.Google Scholar
  24. Zalta, E.: 1983, Abstract Objects: An Introduction to Axiomatic Metaphysics, Reidel, Dordrecht.Google Scholar
  25. Zalta, E.: 1993, Twenty-five basic theorems in situation and world theory, Journal of Philosophical Logic 22(4), 385–428.CrossRefGoogle Scholar
  26. Zalta, E.: 1999, Natural numbers and natural cardinals as abstract objects: a partial reconstruction of Frege’s Grundgesetze in object theory, Journal of Philosophical Logic 28(6), 619–660.CrossRefGoogle Scholar
  27. Zalta, E.: 2000, A (Leibnizian) theory of concepts, Philosophiegeschichte und logische Analyse/Logical Analysis and History of Philosophy 3, 137–183.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.University of California–BerkeleyBerkeleyUSA
  2. 2.Stanford UniversityStanfordUSA

Personalised recommendations