Journal of Philosophical Logic

, Volume 36, Issue 2, pp 155–179 | Cite as

Natural Deduction and Curry's Paradox

Article

Abstract

Curry's paradox, sometimes described as a general version of the better known Russell's paradox, has intrigued logicians for some time. This paper examines the paradox in a natural deduction setting and critically examines some proposed restrictions to the logic by Fitch and Prawitz. We then offer a tentative counterexample to a conjecture by Tennant proposing a criterion for what is to count as a genuine paradox.

Key words

Curry's paradox normalization natural deduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akama, S.: Curry's paradox in contractionless constructive logic, Journal of Philosophical Logic 25 (1996), 135–150.CrossRefGoogle Scholar
  2. 2.
    Anderson, A. R.: Fitch on consistency, in The Logical Enterprise, Yale University Press, New Haven and London, 1975, pp. 123–141.Google Scholar
  3. 3.
    Bunder, M. W.: Tautologies that, with an unrestricted comprehension axiom, lead to inconsistency or triviality, Journal of Non-Classical Logic 3 (1986), 5–12.Google Scholar
  4. 4.
    Fitch, F. B.: Symbolic Logic: An Introduction, Ronald, New York, (1952).Google Scholar
  5. 5.
    Fitch, F. B.: A method for avoiding the Curry paradox, in Essays in Honor of Carl G. Hempel, Reidel, Dordrecht, Holland 1969, pp. 255–265.Google Scholar
  6. 6.
    Humberstone, L.: Contra-classical logics, Australasian Journal of Philosophy 78 (2000), 438–474.CrossRefGoogle Scholar
  7. 7.
    Humberstone, L.: Extensions of Intuitionistic Logic without the Deduction Theorem: Some Simple Examples, Reports on Mathematical Logic 40 (2006), 45–82.Google Scholar
  8. 8.
    Lemmon, E. J.: Beginning Logic, Chapman & Hall, London, (1965).Google Scholar
  9. 9.
    Meyer, R. K.: Peirced clean through, Bulletin of the Section of Logic 19 (1990), 100–101.Google Scholar
  10. 10.
    Meyer, R. K., Routley, R. and Dunn, J. M.: Curry's paradox, Analysis 39 (1979), 124–128.CrossRefGoogle Scholar
  11. 11.
    Meyer, R. K. and Slaney, J. K.: Abelian logic (From A to Z), in G. Priest, R. Routley and J. Norman (eds.), Paraconsistent Logic-Essays on the Inconsistent, Philosophia Verlag, München, (1989).Google Scholar
  12. 12.
    Meyer, R. K. and Slaney, J. K.:, A, still adorable, in W. Carnielli, M. Coniglio and I. D'Ottaviano (eds.), Paraconsistency: The Logical Way to the Inconsistent. Proceedings of the World Congress Held in São Paulo, Marcel Dekker, New York, Basel, (2002).Google Scholar
  13. 13.
    Moh, Shaw-Kwei: Logical paradoxes for many-valued systems, Journal of Symbolic Logic 19, 37–39.CrossRefGoogle Scholar
  14. 14.
    Prawitz, D.: Natural Deduction: A Proof-Theoretical Study, Almqvist & Wiksell, Stockholm, (1965).Google Scholar
  15. 15.
    Prawitz, D.: Ideas and results in proof theory, in J. E. Fenstad (ed.), Proceedings of the Second Scandinavian Logic Symposium, North-Holland, Amsterdam, 1971, pp. 235–307.Google Scholar
  16. 16.
    Prior, A. N.: Curry's paradox and 3-valued logic, Australasian Journal of Philosophy 33 (1955), 177–182.Google Scholar
  17. 17.
    Restall, G.: How to be really contraction free, Studia Logica 52 (1993), 381–391.CrossRefGoogle Scholar
  18. 18.
    Rogerson, S. and Butchart, S.: Naïve comprehension and contracting implications, Studia Logica 71 (2002), 119–132.CrossRefGoogle Scholar
  19. 19.
    Rogerson, S. and Restall, G.: Routes to triviality, Journal of Philosophical Logic 33 (2004), 421–436.CrossRefGoogle Scholar
  20. 20.
    Tennant, N.: Proof and paradox, Dialectica 36 (1982), 265–296.Google Scholar
  21. 21.
    Tennant, N.: On paradox without self-reference, Analysis 55 (1995), 199–207.CrossRefGoogle Scholar
  22. 22.
    van Benthem, J. F. A. K.: Four paradoxes, Journal of Philosophical Logic 7 (1978), 49–72.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc 2006

Authors and Affiliations

  1. 1.School of Philosophy and BioethicsMonash UniversityMelbourneAustralia

Personalised recommendations