Journal of Philosophical Logic

, Volume 35, Issue 2, pp 209–223 | Cite as

Expressivity of Second Order Propositional Modal Logic

Article

Abstract

We consider second-order propositional modal logic (SOPML), an extension of the basic modal language with propositional quantifiers introduced by Kit Fine in 1970. We determine the precise expressive power of SOPML by giving analogues of the Van Benthem–Rosen theorem and the Goldblatt Thomason theorem. Furthermore, we show that the basic modal language is the bisimulation invariant fragment of SOPML, and we characterize the bounded fragment of first-order logic as being the intersection of first-order logic and SOPML.

Key Words

bounded fragment expressivity modal logic propositional quantifiers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barwise, J. (1975): Admissible Sets and Structures, Springer.Google Scholar
  2. 2.
    van Benthem, J. (1983): Modal Logic and Classical Logic, Bibliopolis.Google Scholar
  3. 3.
    Blackburn, P. and Marx, M. (2003): Constructive interpolation in hybrid logic, J. Symb. Log. 68(2), 463–480.CrossRefGoogle Scholar
  4. 4.
    Blackburn, P., de Rijke, M. and Venema, Y. (2001): Modal Logic, Cambridge University Press, Cambridge, UK.Google Scholar
  5. 5.
    Buss, S. R. (1997): Bounded arithmetic and propositional proof complexity, in H. Schwichtenberg (ed.), Logic and Computation, Springer, Berlin Heidelberg New York, pp. 67–122.Google Scholar
  6. 6.
    ten Cate, B. (2005): Model Theory for Extended Modal Languages. PhD thesis, University of Amsterdam. ILLC Dissertation Series DS-2005-01.Google Scholar
  7. 7.
    Feferman, S. (1968): Persistent and invariant formulas for outer extensions, Compos. Math. 20, 29–52.Google Scholar
  8. 8.
    Feferman, S. and Kreisel, G. (1966): Persistent and invariant formulas relative to theories of higher order, Bull. Am. Math. Soc. 72, 480–485. Research Announcement.CrossRefGoogle Scholar
  9. 9.
    Fine, K. (1970): Propositional quantifiers in modal logic, Theoria, 36, 336–346.CrossRefGoogle Scholar
  10. 10.
    Goldblatt, R. (1975): First-order definability in modal logic, J. Symb. Log. 40(1), 35–40.CrossRefGoogle Scholar
  11. 11.
    Janin, D. and Walukiewicz, I. (1996): On the expressive completeness of the propositional mu-calculus with respect to monadic second-order logic, in U. Montanari and V. Sassone (eds.), Proceedings of the seventh International Conference on Concurrency Theory (CONCUR'96), volume 1119 of Lecture Notes in Computer Science, Springer, pp. 263–277.Google Scholar
  12. 12.
    Kaminski, M. and Tiomkin, M. (1996): The expressive power of second-order propositional modal logic, Notre Dame J. Form. Log. 37(1), 35–43.CrossRefGoogle Scholar
  13. 13.
    Kremer, P. (1993): Quantifying over propositions in relevance logic: nonaxiomatizability of primary interpretations of ∀p and ∃p, J. Symb. Log. 58(1), 334–349.CrossRefGoogle Scholar
  14. 14.
    Kremer, P. (1997): On the complexity of propositional quantification in intuitionistic logic, J. Symb. Log. 62(2), 529–544.CrossRefGoogle Scholar
  15. 15.
    Lévy, A. (1965): A Hierarchy of Formulas in Set Theory, volume 57 of Memoirs of the American Mathematical Society.Google Scholar
  16. 16.
    Otto, M. (2004): Modal and guarded characterisation theorems over finite transition systems, Ann. Pure Appl. Logic 130, 173–205.CrossRefGoogle Scholar
  17. 17.
    Rabin, M. (1969): Decidability of second-order theories and automata on infinite trees, Trans. AMS 141, 1–35.CrossRefGoogle Scholar
  18. 18.
    Stirling, C. (2003): Bisimulation and language equivalence, in Ruy J. G. B. de Queiroz (ed.), Logic for Concurrency and Synchronisation, Trends in Logic, Kluwer Academic, pp. 269–284.Google Scholar
  19. 19.
    van Benthem, J. (1975): A note on modal formulas and relational properties, J. Symb. Log. 40(1), 55–58.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.ISLA, Universiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations