Journal of Philosophical Logic

, Volume 34, Issue 5–6, pp 459–506

The Logic and Meaning of Plurals. Part I

Article
  • 181 Downloads

Abstract

Contemporary accounts of logic and language cannot give proper treatments of plural constructions of natural languages. They assume that plural constructions are redundant devices used to abbreviate singular constructions. This paper and its sequel, “The logic and meaning of plurals, II”, aim to develop an account of logic and language that acknowledges limitations of singular constructions and recognizes plural constructions as their peers. To do so, the papers present natural accounts of the logic and meaning of plural constructions that result from the view that plural constructions are, by and large, devices for talking about many things (as such). The account of logic presented in the papers surpasses contemporary Fregean accounts in its scope. This extension of the scope of logic results from extending the range of languages that logic can directly relate to. Underlying the view of language that makes room for this is a perspective on reality that locates in the world what plural constructions can relate to. The papers suggest that reflections on plural constructions point to a broader framework for understanding logic, language, and reality that can replace the contemporary Fregean framework as this has replaced its Aristotelian ancestor.

Keywords

aggregate irreducibility of plurals logic natural language plural regimentation of plurals second-order logic semantics set singular the many the one 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almog, J. et al. (eds.) (1989) Themes from Kaplan, Oxford University Press, Oxford. Google Scholar
  2. Bäuerle, R. et al. (eds.) (1983) Meaning, Use, and Interpretation of Language, Walter de Gruyter, Berlin. Google Scholar
  3. Benacerraf, P. and Putnam, H. (eds.) (1983) Philosophy of Mathematics, 2nd edn, Cambridge University Press, Cambridge. Google Scholar
  4. Bocheński, I. M. (1961) A History of Formal Logic, translated and edited by I. Thomas, University of Notre Dame Press, Notre Dame. Google Scholar
  5. Boolos, G. (1975) On second-order logic, Journal of Philosophy 72, 509–537. Google Scholar
  6. Boolos, G. (1984) To be is to be a value of a variable (or to be some values of some variables), Journal of Philosophy 81, 430–448. Google Scholar
  7. Boolos, G. (1985a) Nominalist Platonism, Philosophical Review 94, 327–344. Google Scholar
  8. Boolos, G. (1985b) Reading the Begriffsschrift, Mind 94, 331–344. Google Scholar
  9. Boolos, G. and Jeffrey, R. (1989) Computability and Logic, 3rd edn, Cambridge University Press, Cambridge. Google Scholar
  10. Burge, T. (1977) A theory of aggregates, Noûs 11, 97–117. Google Scholar
  11. Church, A. (1956) Introduction to Mathematical Logic, revised and enlarged edn, Princeton University Press, Princeton. Google Scholar
  12. Davidson, D. (1967) The logical form of action sentences, in Rescher (ed.) (1967), pp. 105–122. Google Scholar
  13. Dummett, M. (1991) Frege: Philosophy of Mathematics, Harvard University Press, Cambridge, MA. Google Scholar
  14. Enderton, H. (1972) A Mathematical Introduction to Logic, Academic Press, New York. Google Scholar
  15. Frege, G. (1884) Die Grundlagen der Arithmetik, Köbner, Breslau; translated by J. L. Austin as The Foundations of Arithmetic, Basil Blackwell, Oxford, 1980, 2nd revised edn. Google Scholar
  16. Frege, G. (1892), Über Begriff und Gegenstand, Vierteljahresschrift für Wissenschaftliche Philosophie 16, 192–205; translated, together with its draft, as “On concept and object” in Frege (1979), pp. 87–117. Google Scholar
  17. Frege, G. (1902) Letter to Russell, 28.7.1902, translation of the German original in Frege (1980). Google Scholar
  18. Frege, G. (1979) Posthumous Writings, ed. by H. Hermes et al., Basil Blackwell, Oxford. Google Scholar
  19. Frege, G. (1980) Philosophical and Mathematical Correspondence, ed. by G. Gabriel et al., Basil Blackwell, Oxford. Google Scholar
  20. Gödel, K. (1947) What is Cantor's continuum problem, The American Mathematical Monthly 54, 515–525; revised and expanded version in Benacerraf and Putnam (eds.), 1983, pp. 470–486. Google Scholar
  21. Grandy, R. E. (1976) Anadic logic and English, Synthese 32, 395–402. CrossRefGoogle Scholar
  22. Hazen, A. P. (1993) Against pluralism, Australasian Journal of Philosophy 71, 132–144. CrossRefGoogle Scholar
  23. Kamp, H. and Reyle, U. (1993) From Discourse to Logic, Kluwer, Dordrecht. Google Scholar
  24. Kaplan, D. (1989) Demonstratives, in Almog et al. (1989), pp. 481–563. Google Scholar
  25. Kenny, A. (1963) Action, Emotion, and Will, RKP, London. Google Scholar
  26. Kleene, S. C. (1967) Mathematical Logic, Wiley, New York. Google Scholar
  27. Kneale, W. and Kneale, M. (1962) The Development of Logic, Clarendon Press, Oxford. Google Scholar
  28. Leonard, H. S. and Goodman, N. (1940) The calculus of individuals and its uses, Journal of Symbolic Logic 5, 45–55. Google Scholar
  29. Lewis, D. (1991) Parts of Classes, Basil Blackwell, Oxford. Google Scholar
  30. Link, G. (1983) The logical analysis of plurals and mass terms: A lattice-theoretic approach, in Bäuerle et al. (1983), pp. 245–257; reprinted in Link (1998), pp. 11–34. Google Scholar
  31. Link, G. (1991) Plural, in von Stechow and Wunderlich (eds.) (1991), pp. 418–440; reprinted in Link (1998), pp. 35–75. Google Scholar
  32. Link, G. (1995) Algebraic semantics for natural language: Some philosophy, some applications, International Journal of Human–Computer Studies 43, 765–784; reprinted in Link (1998), pp. 189–211. Google Scholar
  33. Link, G. (1998) Algebraic Semantics in Language and Philosophy, CSLI Publications, Stanford. Google Scholar
  34. Lønning, J. T. (1996) Plurals and collectivity, in ter Meulen and van Benthem (eds.) (1996), pp. 1009–1053. Google Scholar
  35. Massey, G. J. (1976) Tom, Dick, and Harry, and all the king's men, American Philosophical Quarterly 13, 89–107. Google Scholar
  36. Mates, B. (1972) Elementary Logic, 2nd edn, Oxford University Press, New York. Google Scholar
  37. Mill, J. S. (1884) A System of Logic, People's ed., Longman, Green, & Co, London. Google Scholar
  38. Morton, A. (1975) Complex individuals and multigrade relations, Noûs 9, 309–318. Google Scholar
  39. Oliver, A. (1994) Frege and Dummett are two, Philosophical Quarterly 44, 74–82. Google Scholar
  40. Peano, G. (1889) Arithmetices principia, nova methodo exposita, Bocca, Turin; translated as “The principles of arithmetic, presented by a new method” by van Heijenoort in van Heijenoort (ed.) (1967), pp. 83–97. Google Scholar
  41. Quine, W. V. (1970) Philosophy of Logic, Prentice-Hall, Englewood Cliffs, NJ. Google Scholar
  42. Quine, W. V. (1972) Methods of Logic, 3rd edn, RKP, London. Google Scholar
  43. Quine, W. V. (1973) The Roots of Reference, Open Court, La Salle, IL. Google Scholar
  44. Quine, W. V. (1991) Immanence and validity, Dialectica 45, 219–230. Google Scholar
  45. Rescher, N. (ed.) (1967) The Logic of Decision and Action, University of Pittsburgh Press, Pittsburgh. Google Scholar
  46. Resnik, M. D. (1988) Second-order logic still wild, Journal of Philosophy 85, 75–87. Google Scholar
  47. Russell, B. (1903) Principles of Mathematics, Cambridge University Press, Cambridge; 2nd edn, George Allen & Unwin, London, 1937. Google Scholar
  48. Russell, B. (1908) Mathematical logic as based on the theory of types, American Journal of Mathematics 30, 222–262; reprinted in van Heijenoort (ed.) (1967), pp. 150–182. Google Scholar
  49. Russell, B. (1919) Introduction to Mathematical Philosophy, George Allen & Unwin, London. Google Scholar
  50. Schein, B. (1993) Plurals and Events, MIT Press, Cambridge, MA. Google Scholar
  51. Simons, P. M. (1982) Numbers and manifolds, in Smith (ed.) (1982), pp. 160–198. Google Scholar
  52. Smith, B. (ed.) (1982) Parts and Moments: Studies in Logic and Formal Ontology, Philosophia Verlag, München. Google Scholar
  53. Tarski, A. (1929) Les fondaments de la géométrie des corps, Księga Pami \(\) tkowa Pierwszego Polskiego Zjazdu Matematycznego, supplement to Annales de la Société Polonaise de Mathématique 7, 29–33; translated as “Foundations of the geometry of solids” in Tarski (1956), pp. 24–29. Google Scholar
  54. Tarski, A. (1956) Logic, Semantics, Metamathematics, Oxford University Press, Oxford; 2nd edn, Hackett Publishing Company, Indiana, 1983. Google Scholar
  55. Taylor, B. and Hazen, A. P. (1992) Flexibly structured predication, Logique et Analyse 35, 375–393. Google Scholar
  56. ter Meulen, A. and van Benthem, J. (eds.) (1996) Handbook of Logic and Language, Elsevier, New York. Google Scholar
  57. Tomberlin, J. E. (ed.) (1994) Philosophical Perspectives, 8: Logic and Language, Ridgeview, Atascadero, CA. Google Scholar
  58. van Heijenoort, J. (ed.) (1967) From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge. Google Scholar
  59. van Inwagen, P. (1990) Material Beings, Cornell University Press, Ithaca. Google Scholar
  60. van Inwagen, P. (1994) Composition as identity, in Tomberlin (ed.) (1994), pp. 207–220. Google Scholar
  61. von Stechow, A. and Wunderlich, D. (eds.) (1991) Semantik/Semantics: Ein internationales Handbuch der zeitgenössischen Forschung/An International Handbook of Contemporary Research, de Gruyter, Berlin. Google Scholar
  62. Whitehead, A. N. and Russell, B. (1910–3) Principia Mathematica, Vols. I–III, Cambridge University Press, Cambridge; 2nd edn, 1927. Google Scholar
  63. Yi, B.-U. (1995) Understanding the many, Ph.D. Dissertation, UCLA; revised version with a new preface, Routledge, New York & London, 2002. Google Scholar
  64. Yi, B.-U. (1998) Numbers and relations, Erkenntnis 49, 93–113. CrossRefGoogle Scholar
  65. Yi, B.-U. (1999a) Is two a property?, Journal of Philosophy 95, 163–190. Google Scholar
  66. Yi, B.-U. (1999b) Is mereology ontologically innocent?, Philosophical Studies 93, 141–160. CrossRefGoogle Scholar
  67. Yi, B.-U. (LMP II) The logic and meaning of plurals, II, The Journal of Philosophical Logic, forthcoming. Google Scholar
  68. Yi, B.-U. (preprint) Is there a plural object?, unpublished manuscript. Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of MinnesotaMinneapolis

Personalised recommendations