Higher-Order and Symbolic Computation

, Volume 20, Issue 3, pp 209–230

Strongly reducing variants of the Krivine abstract machine

Article

Abstract

We present two variants of the Krivine abstract machine that reduce lambda-terms to full normal form. We give a proof of their correctness by interpreting their behaviour in the λσ-calculus.

Keywords

Strong normalization Abstract machines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitution. In: ACM Symposium on Principles of Programming Languages (POPL) (1990) Google Scholar
  2. 2.
    Ager, M., Biernacki, D., Danvy, O., Midtgaard, J.: A functional correspondance between evaluators and abstract machines. In: PPDP’03 Proceedings of the 5th ACM Sigplan International Conference on Principle and Practice of Declarative Programming, pp. 8–19 (2003) Google Scholar
  3. 3.
    Argo, G.: Improving the three instruction machine. In: The Fourth International Conference on Functional Programming Languages and Computer Architecture, London (1989) Google Scholar
  4. 4.
    Asperti, A.: Linear logic, comonads and optimal reductions. Fund. Inf. 22(1), 3–22 (1994) MathSciNetGoogle Scholar
  5. 5.
    Asperti, A., Mairson, H.: Parallel beta reduction is not elementary recursive. In: ACM Symposium on Principles of Programming Languages, pp. 303–315 (1998) Google Scholar
  6. 6.
    Barendregt, H.: The type free λ-calculus. In: Handbook of Mathematical Logic, pp. 1091–1132. North-Holland, Amsterdam (1977), Chap. D.7 Google Scholar
  7. 7.
    Barendregt, H.: The Lambda Calculus. North-Holland, Amsterdam (1981) MATHGoogle Scholar
  8. 8.
    Barras, B.: Efficient reduction functions in Coq (1998). Unpublished note available at http://pauillac.inria.fr/~barras/reduction
  9. 9.
    Crégut, P.: An abstract machine for the normalization of λ-terms. In: ACM Lisp and Functional Programming Conference (1990) Google Scholar
  10. 10.
    Crégut, P.: Machines à environnement pour la réduction symbolique et l’évaluation partielle. Ph.D. Thesis, Université Paris VII (1991) Google Scholar
  11. 11.
    Curien, P.-L., Hardin, T., Lévy, J.-J.: Confluence properties of weak and strong calculi of explicit substitutions. J. ACM 42(2), 362–391 (1996) Google Scholar
  12. 12.
    Fairbairn, J., Wray, S.: TIM: a simple, lazy, abstract machine to execute supercombinators. In: Conference on Functional Programming and Computer Architecture, Portland (1987) Google Scholar
  13. 13.
    Glauert, J.R., Kennaway, R., Papadopoulos, G., Sleep, R.: DACTL, an experimental graph rewriting language. In: Ehrig, H., Kreowsky, H., Rozenberg, G. (eds.) Graph Grammars and Their Application to Computer Science, pp. 378–395 (1991) Google Scholar
  14. 14.
    Gontier, G., Abadi, M., Lévy, J.-J.: The geometry of optimal reduction. In: ACM Symposium on Principles of Programming Languages, pp. 15–26 (1992) Google Scholar
  15. 15.
    Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: International Conference on Functional Programming (ICFP’02) (2002) Google Scholar
  16. 16.
    Hardin, T., Maranget, L., Paganot, B.: Functional runtimes within the lambda-sigma calculus. J. Funct. Program. 8(2), 131–176 (1998) MATHCrossRefGoogle Scholar
  17. 17.
    Krivine, J.-L.: A call-by-name lambda-calculus machine. Higher Order Symb. Comput. (2007, this volume) Google Scholar
  18. 18.
    Lamping, J.: An algorithm for optimal lambda calculus reduction. In: ACM Symposium on Principles of Programming Languages (POPL) (1990) Google Scholar
  19. 19.
    Leroy, X.: The ZINC experiment: an economical implementation of the ML language. Technical Report 117, INRIA (1990) Google Scholar
  20. 20.
    Lévy, J.-J.: Optimal reductions in the lambda-calculus. In: Seldin, J., Hindley, J. (eds.) To H.B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism, pp. 159–191 (1980) Google Scholar
  21. 21.
    Sestoft, P.: Analysis and efficient implementation of functional programs. Ph.D. Thesis, University of Copenhagen, DIKU research report 92/6 (1991) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.France Télécom R&DLannionFrance

Personalised recommendations