Higher-Order and Symbolic Computation

, Volume 20, Issue 3, pp 295–318 | Cite as

The graphical Krivine machine



We present a natural implementation of the Krivine machine in interaction nets: one rule for each transition and the usual rules for duplication and erasing. There is only one rule devoted to the so-called administration. This way, we obtain a graphical system encoding λ-calculus weak head reduction that can be extended to a λ-calculus normalizer by encoding left reduction.


λ-calculus Linear logic Interaction nets Sharing-graphs Rewriting Distributed computation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asperti, A., Guerrini, S.: The Optimal Implementation of Functional Programming Languages, Cambridge Tracts in Theoretical Computer Science, vol. 45. Cambridge University Press, Cambridge (1998) Google Scholar
  2. 2.
    Danos, V., Regnier, L.: Reversible, irreversible and optimal λ-machines. Theor. Comput. Sci. 227 (1999) Google Scholar
  3. 3.
    Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–102 (1987) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gonthier, G., Abadi, M., Lévy, J.-J.: The geometry of optimal lambda reduction. In: Proceedings of the 19th Annnual ACM Symposium on Principles of Programming Languages (POPL’92), pp. 15–26. ACM Press (1992) Google Scholar
  5. 5.
    Krivine, J.-L.: Un interpréteur pour le λ-calcul. Technical Report, Notes de cours de DEA, Université de Paris 7 (1985) Google Scholar
  6. 6.
    Krivine, J.-L.: Lambda-Calculus, Types and Models. Ellis Horwood Series in Computers and Their Applications (1993). Transl. from the French by Rene Cori (English) Google Scholar
  7. 7.
    Lafont, Y.: Interaction nets. In: Proceedings of the 17th Annnual ACM Symposium on Principles of Programming Languages, Orlando, FL, USA, pp. 95–108 (1990) Google Scholar
  8. 8.
    Lafont, Y.: From proof-nets to interaction nets. In: Advances in Linear Logic. London Mathematical Society Lecture Note Series, vol. 222. Cambridge University Press, Cambridge (1995) Google Scholar
  9. 9.
    Lafont, Y.: Interaction combinators. Inf. Comput. 137(1), 69–101 (1997) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lamping, J.: An algorithm for optimal lambda-calculus reduction. In: Proceedings of the 17th Annnual ACM Symposium on Principles of Programming Languages, Orlando, FL, USA (1990) Google Scholar
  11. 11.
    Lang, F.: Modèles de la β-réduction pour les implantations. Ph.D. Thesis, Ecole normale supérieure de Lyon (1998) Google Scholar
  12. 12.
    Lippi, S.: Encoding left reduction in the lambda-calculus with interaction nets. Math. Struct. Comput. Sci. 12(6) (December 2002) Google Scholar
  13. 13.
    Lippi, S.: \(\textsf{in}^{2}\) : a graphical interpreter for the interaction nets. In: Proceedings of Rewriting Techniques and Applications (RTA ’02). Springer, New York (2002) Google Scholar
  14. 14.
    Lippi, S.: Théorie et pratique des réseaux d’interaction. Ph.D. Thesis, Université de la méditerranée (2002) Google Scholar
  15. 15.
    Mackie, I.: The geometry of implementation. Ph.D. Thesis, Department of Computing, Imperial College of Science, Technology and Medicine (1994) Google Scholar
  16. 16.
    Mackie, I.: Yale: yet another lambda evaluator based on intetaction nets. In: Proceedings of the 3rd ACM SIGPLAN International Conference on Functional Programming (ICFP’98). ACM Press (1998) Google Scholar
  17. 17.
    Mackie, I., Sousa Pinto, J.: Encoding linear logic with interaction combinators. Inf. Comput. 176, 153–186 (2002) MATHCrossRefGoogle Scholar
  18. 18.
    Sousa Pinto, J.: Weak reduction and garbage collection in interaction nets. In: Gramlich, B., Lucas, S. (eds.) Proceedings of the 3rd Int’l Workshop on Reduction Strategies in Rewriting and Programming (2003) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institut de Mathématiques de LuminyUMR 6206 du CNRSMarseille Cedex 9France

Personalised recommendations