Higher-Order and Symbolic Computation

, Volume 19, Issue 2–3, pp 283–304 | Cite as

About permutation algebras, (pre)sheaves and named sets

Article

Abstract

In this paper we survey some well-known approaches proposed as general models for calculi dealing with names (like for example process calculi with name-passing). We focus on (pre)sheaf categories, nominal sets, permutation algebras and named sets, studying the relationships among these models, thus allowing techniques and constructions to be transferred from one model to the other.

Keywords

Nominal calculi Permutation algebras Presheaf categories Named sets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bucalo, A., Hofmann, M., Honsell, F., Miculan, M., Scagnetto, I.: Consistency of the Theory of Contexts. J. Funct. Progr. 16, 327–395 (2006)MATHCrossRefGoogle Scholar
  2. 2.
    Corradini, A., Heckel, R., Montanari, U.: Compositional SOS and Beyond: A Coalgebraic View of Open Systems. Theor. Comp. Sci. 280, 163–192 (2002)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ferrari, G., Montanari, U., Pistore, M.: Minimizing Transition Systems for Name Passing Calculi: A Co-Algebraic Formulation. In: Nielsen. M., Engberg, U. (eds.), Foundations of Software and Computer Science, vol. 2303, Lect. Notes in Comp. Sci., Springer, pp. 129–143 (2002)Google Scholar
  4. 4.
    Fiore, M.: Notes on combinatorial functors (draft). Unpublished manuscript available from the author’s web page (2001)Google Scholar
  5. 5.
    Fiore, M., Moggi, E., Sangiorgi, D.: A fully abstract model for the calculus. In: Clarke, E. (ed.), Logic in Computer Science, IEEE, pp. 43–54 (1996)Google Scholar
  6. 6.
    Fiore, M., Staton, S.: Comparing Operational Models of Name-Passing Process Calculi. In: Adámek, J., Milius, S. (eds.), Coalgebraic Methods in Computer Science, vol. 106, Electr. Notes in Theor. Comp. Sci., Elsevier Science (2004)Google Scholar
  7. 7.
    Fiore, M., Turi, D.: Semantics of Name and Value Passing. In: Maierson, H. (ed.), Logic in Computer Science. IEEE, pp. 93–104 (2001)Google Scholar
  8. 8.
    Gabbay, M.J., Pitts, A.M.: A New Approach to Abstract Syntax wit Variable Binding. Formal Aspects of Computing 13, 341–363 (2002)CrossRefGoogle Scholar
  9. 9.
    Gadducci, F., Miculan, M., Montanari, U.: Some Characterization Results for Permutation Algebras. In: Honsell, F., Lenisa, M., Miculan, M. (eds.), Computational Metamodels, Workshop of the sc cometa Project, vol. 104, Electr. Notes in Theor. Comp. Sci., Elsevier Science (2004)Google Scholar
  10. 10.
    Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: Longo, G. (ed.), Logic in Computer Science, IEEE, pp. 204–213 (1999) Computer Society Press.Google Scholar
  11. 11.
    Honsell, F., Miculan, M., Scagnetto, I.: An Axiomatic Approach to Metareasoning on Nominal Algebras in HOAS. In: Orejas, F., Spirakis, P., van Leeuwen, J. (eds.), Automata, Languages and Programming, vol. 2076, Lect. Notes in Comp. Sci., Springer, pp. 963–978 (2001)Google Scholar
  12. 12.
    Kelley, J.: General topology. Springer (1975)Google Scholar
  13. 13.
    MacLane, S.: Categories for the Working Mathematician. Springer (1971)Google Scholar
  14. 14.
    McLane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer (1994)Google Scholar
  15. 15.
    Miculan, M., Yemane, K.: A Unifying Model of Variables and Names. In: Sassone, V. (ed.), Foundations of Software Science and Computational Structures, vol. 3441, Lect. Notes in Comp. Sci., Springer, pp. 170–186 (2005)Google Scholar
  16. 16.
    Moggi, E.: Notions of computation and monads. Information and Computation 93, 55–92 (1991)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Montanari, U., Pistore, M.: Structured Coalgebras and Minimal HD-automata for the calculus. Theor. Comp. Sci. 340, 539–576.Google Scholar
  18. 18.
    Montanari, U., Pistore, M.: Calculus, Structured Coalgebras, and Minimal HD-automata. In: Nielsen, M., Rovan, B. (eds.), Mathematical Foundations of Computer Science, vol. 1893, Lect. Notes in Comp. Sci., Springer, pp. 569–578 (2000)Google Scholar
  19. 19.
    O’Hearn, P., Tennent, R.: Parametricity and Local Variables. In: O’Hearn, P., Tennent, R. (eds.), Algol-like Languages, Birkhauser, pp. 109–164 (1997)Google Scholar
  20. 20.
    Pitts, A.M.: Nominal Logic, A First Order Theory of Names and Binding. Information and Computation 186, 165–193 (2003)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Plotkin, G., Power, J.: Semantics for Algebraic Operations. In: Brookes, S., Mislove, M. (eds.), Mathematical Foundations of Programming Semantics, vol.45, Electr. Notes in Theor. Comp. Sci., Elsevier Science (2001)Google Scholar
  22. 22.
    Rutten, J.: Universal coalgebra: A theory of systems. Theor. Comp. Sci. 249, 3–80 (2000)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Stark, I.: Names and Higher-Order Function. Ph.D. thesis, University of Cambridge, Cambridge Computer Laboratory (1994)Google Scholar
  24. 24.
    Stark, I.: A fully abstract domain model for the calculus. In: Clarke, E. (ed.), Logic in Computer Science. IEEE, pp. 36–42 (1996) Computer Society Press.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Pisalargo Pontecorvo 3cPisaItaly
  2. 2.Department of Mathematics and Computer ScienceUniversity of UdineUdineItaly

Personalised recommendations