Higher-Order and Symbolic Computation

, Volume 19, Issue 4, pp 415–463 | Cite as

Deriving escape analysis by abstract interpretation

  • Patricia M. HillEmail author
  • Fausto Spoto


Escape analysis of object-oriented languages approximates the set of objects which do not escape from a given context. If we take a method as context, the non-escaping objects can be allocated on its activation stack; if we take a thread, Java synchronisation locks on such objects are not needed. In this paper, we formalise a basic escape domain \({\mathcal{E}}\) as an abstract interpretation of concrete states, which we then refine into an abstract domain \({\cal ER}\) which is more concrete than \({\mathcal{E}}\) and, hence, leads to a more precise escape analysis than \({\mathcal{E}}\). We provide optimality results for both \({\mathcal{E}}\) and \({\cal ER}\), in the form of Galois insertions from the concrete to the abstract domains and of optimal abstract operations. The Galois insertion property is obtained by restricting the abstract domains to those elements which do not contain garbage, by using an abstract garbage collector. Our implementation of \({\cal ER}\) is hence an implementation of a formally correct escape analyser, able to detect the stack allocatable creation points of Java (bytecode) applications.


Abstract interpretation Denotational semantics Garbage collection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, G.: Simultaneous Demand-Driven Data-flow and Call Graph Analysis. In: Proc. of the International Conference on Software Maintenance (ICSM’99), pp. 453–462. IEEE Computer Society, Oxford, UK (1999).Google Scholar
  2. 2.
    Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, Principles Techniques and Tools. Addison Wesley Publishing Company (1986).Google Scholar
  3. 3.
    Arnold, K., Gosling, J., Holmes, D.: The Java™ Programming Language. 3rd edn, Addison-Wesley (2000).Google Scholar
  4. 4.
    Bacon, D.F., Sweeney, P.F.: Fast Static Analysis of C++ Virtual Function Calls. In: Proc. of OOPSLA’96, vol. 31(10) of ACM SIGPLAN Notices, pp. 324–341. ACM Press, New York (1996).Google Scholar
  5. 5.
    Blanchet, B.: Escape Analysis: Correctness Proof, Implementation and Experimental Results. In: 25th ACM SIGPLAN-SIGACT Symposium of Principles of Programming Languages (POPL’98), pp. 25–37. ACM Press, San Diego, CA, USA, (1998).CrossRefGoogle Scholar
  6. 6.
    Blanchet, B.: Escape Analysis for Java: Theory and Practice. ACM TOPLAS, 25(6), 713–775 (2003).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bogda, J., Hölzle, U.: Removing Unnecessary Synchronization in Java. In: Proc. of OOPSLA’99, vol. 34(10) of SIGPLAN Notices, pp. 35–46. Denver, Colorado, USA (1999).Google Scholar
  8. 8.
    Bossi, A., Gabbrielli, M., Levi, G., Martelli, M.: The s-Semantics Approach: Theory and Applications. J. Logic. Program. 19/20:149–197, 1994.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans Comput. 35(8), 677–691 (1986).zbMATHGoogle Scholar
  10. 10.
    Choi, J.-D., Grove, D., Hind, M., Sarkar, V.: Efficient and Precise Modeling of Exceptions for the Analysis of Java Programs. In: Proc. of the SIGPLAN/SIGSOFT Workshop on Program Analysis For Software Tools and Engineering (PASTE’99), pp. 21–31. Toulouse, France (1999).Google Scholar
  11. 11.
    Choi, J.-D., Gupta, M., Serrano, M.J., Sreedhar, V.C., Midkiff, S.P.: Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis. Technical Report RC22340, IBM (2002).Google Scholar
  12. 12.
    Choi, J.-D., Gupta, M., Serrano, M.J., Sreedhar, V.C., Midkiff, S.P.: Stack Allocation and Synchronization Optimizations for Java Using Escape Analysiss. ACM TOPLAS. 25(6), 876–910 (2003).CrossRefGoogle Scholar
  13. 13.
    Cortesi, A., Filé, G., Winsborough, W.: The Quotient of an Abstract Interpretation. Theoret. Comput. Sci., 202(1–2), 163–192 (1998).zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. In: Proc. of POPL’77, pp. 238–252 (1977).Google Scholar
  15. 15.
    Cousot, P., Cousot, R.: Abstract Interpretation and Applications to Logic Programs. J Logic Program, 13(2 & 3):103–179 (1992).zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Cousot, P., Cousot, R.: Modular Static Program Analysis. In: Horspool, R.N. (ed.), Proceedings of Compiler Construction, vol. 2304 of Lecture Notes in Computer Science, pp. 159–178. Springer-Verlag, Grenoble, France (2002).Google Scholar
  17. 17.
    Dams, D.R.: Abstract Interpretation and Partition Refinement for Model Checking. PhD thesis, Eindhoven University of Technology, The Netherlands (1996).Google Scholar
  18. 18.
    Dean, J., Grove, D., Chambers, C.: Optimization of Object-Oriented Programs using Static Class Hierarchy Analysis. In: Olthoff, W.G. (ed.), Proc. of ECOOP’95, vol. 952 of LNCS, pp. 77–101. Springer-Verlag, Århus, Denmark, (1995).Google Scholar
  19. 19.
    Deutsch, A.: On the Complexity of Escape Analysis. In: 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’97), pp. 358–371. ACM Press, Paris, France (1997).CrossRefGoogle Scholar
  20. 20.
    Dovier, A., Piazza, C., Pontelli, E., Rossi, G.: Sets and Constraint Logic Programming. ACM Trans Program Lang Sys. 22(5), 861–931 (2000).CrossRefGoogle Scholar
  21. 21.
    Gay, D., Steensgaard, B.: Fast Escape Analysis and Stack Allocation for Object-Based Programs. In: Watt, D.A. (ed.), Compiler Construction, 9th International Conference (CC’00), vol. 1781 of Lecture Notes in Computer Science, pp. 82–93. Springer-Verlag, Berlin (2000).Google Scholar
  22. 22.
    Giacobazzi, R., Ranzato, F.: Refining and Compressing Abstract Domains. In: Proc. of the 24th International Colloquium on Automata, Languages and Programming (ICALP’97), vol. 1256 of LNCS, pp. 771–781. Springer-Verlag (1997).Google Scholar
  23. 23.
    Giacobazzi, R., Scozzari, F.: A Logical Model for Relational Abstract Domains. ACM Trans Program Lang Sys. 20(5), 1067–1109 (1998).CrossRefGoogle Scholar
  24. 24.
    Grove, D., Chambers, C.: A Framework for Call Graph Construction Algorithms. ACM TOPLAS. 23(6), 685–746 (2001).CrossRefGoogle Scholar
  25. 25.
    Lhoták, H., Hendren, L.: Scaling Java Points-to Analysis using Spark. In: Hedin, G. (ed.), Proc. of Compiler Construction, vol. 2622 of Lecture Notes in Computer Science, pp. 153–169. Springer-Verlag, Warsaw, Poland (2003).Google Scholar
  26. 26.
    Hill, P.M., Spoto, F.: A Foundation of Escape Analysis. In: Kirchner, H., Ringeissen, C. (ed.), Proc. of AMAST’02, vol. 2422 of LNCS, pp. 380–395. Springer-Verlag, St. Gilles les Bains, La Réunion island, France (2002).Google Scholar
  27. 27.
    Hill, P.M., Spoto, F.: A Refinement of the Escape Property. In: Cortesi, A. (ed.), Proc. of the VMCAI’02 workshop on Verification, Model-Checking and Abstract Interpretation, vol. 2294 of Lecture Notes in Computer Science, pp. 154–166. Springer-Verlag, Venice, Italy (2002).Google Scholar
  28. 28.
    Hill, P.M., Spoto, F.: Logic Programs as Compact Denotations. Comput. Lang. Sys. Struct. 29(3), 45–73 (2003).zbMATHCrossRefGoogle Scholar
  29. 29.
    Hill, P.M., Spoto, F.: Deriving Escape Analysis by Abstract Interpretation: Proofs of results. The Computing Research Repository (CoRR): arXiv:archive.cs/PL/0607101 (2006).Google Scholar
  30. 30.
    Jacobs, B., Poll, E.: Coalgebras and Monads in the Semantics of Java. Theoret. Comput. Sci. 291(3), 329–349 (2003).zbMATHMathSciNetGoogle Scholar
  31. 31.
    Jensen, T.: Disjunctive Program Analysis for Algebraic Data Types. ACM Trans. Program. Lang. Syst. 19(5), 752–804 (1997).CrossRefGoogle Scholar
  32. 32.
    Jones, N.D., Søndergaard, H.: A Semantics-based Framework for the Abstract Interpretation of Prolog. In: Abramsky, S., Hankin, C. (eds.), Abstract Interpretation of Declarative Languages, pp. 123–142. Ellis Horwood Ltd (1987).Google Scholar
  33. 33.
    Lindholm, T., Yellin, F.: The Java™ Virtual Machine Specification. 2nd edn, Addison-Wesley. (1999).Google Scholar
  34. 34.
    Cousot. P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In: Proc. of the Sixth Annual ACM Symposium on Principles of Programming Languages (POPL’79), pp. 269–282. ACM, San Antonio, Texas (1979).Google Scholar
  35. 35.
    Palsberg, J., Schwartzbach, M.I.: Object-Oriented Type Inference. In: Proc. of OOPSLA’91, volume 26(11) of ACM SIGPLAN Notices, pp. 146–161. ACM Press (1991).Google Scholar
  36. 36.
    Park, Y.G., Goldberg, B.: Escape Analysis on Lists. In: ACM SIGPLAN’92 Conference on Programming Language Design and Implementation (PLDI’92), vol. 27(7) of SIGPLAN Notices, pp. 116–127. San Francisco, California, USA (1992).Google Scholar
  37. 37.
    Rountev, A., Milanova, A., Ryder, B.G.: Points-to Analysis for Java Using Annotated Constraints. In: Proc. of ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA’01), volume 36(11), of ACM SIGPLAN, pp. 43–55. Tampa, Florida, USA (2001).Google Scholar
  38. 38.
    Ruf, E.: Effective Synchronization Removal for Java. In: ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’00), vol. 35(5) of SIGPLAN Notices, pp. 208–218. Vancouver, British Columbia, Canada (2000).Google Scholar
  39. 39.
    Ruggieri, C., Murtagh, T.P.: Lifetime Analysis of Dynamically Allocated Objects. In: 15th ACM Symposium on Principles of Programming Languages (POPL’88), pp. 285–293. San Diego, California, USA (1988).Google Scholar
  40. 40.
    Salcianu, A.: Pointer Analysis and Its Application to Java Programs. PhD thesis, MIT (2001).Google Scholar
  41. 41.
    Salcianu, A., Rinard, M.: Pointer and Escape Analysis for Multithreaded Programs. In: Proc. of ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’01), volume 36(7) of SIGPLAN Notices, pp. 12–23, Snowbird, Utah, USA (2001)Google Scholar
  42. 42.
    Scozzari, F.: Logical Optimality of Groundness Analysis. Theoret. Compu. Sci., 277(1–2), 149–184 (2002).zbMATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Søndergaard, H.: An Application of Abstract Interpretation of Logic Programs: Occur Check Reduction. In: Robinet, B., Wilhelm, R. (eds.), Proc. of the European Symposium on Programming (ESOP), vol. 213 of Lecture Notes in Computer Science, pp. 327–338. Springer, Saarbrücken, Federal Republic of Germany (1986).Google Scholar
  44. 44.
    Spoto, F.: The Julia Generic Static Analyser. Available at the address (2004).
  45. 45.
    Spoto, F., Jensen, T.: Class Analyses as Abstract Interpretations of Trace Semantics. ACM Trans. Program. Lang. Sys. (TOPLAS), 25(5), 578–630 (2003).CrossRefGoogle Scholar
  46. 46.
    Streckenbach, M., Snelting, G.: Points-to for Java: A General Framework and an Empirical Comparison. Technical report, Universität Passau, Germany (2000).Google Scholar
  47. 47.
    Tarski, A.: A Lattice-theoretical Fixpoint Theorem and its Applications. Pacific J. Math. 5, 285–309 (1955).zbMATHMathSciNetGoogle Scholar
  48. 48.
    Tip, F., Palsberg, J.: Scalable Propagation-Based Call Graph Construction Algorithms. In: Proc. of OOPSLA’00, vol. 35(10) of SIGPLAN Notices, pp. 281–293. ACM, Minneapolis, Minnesota, USA (2000).Google Scholar
  49. 49.
    Vivien, F., Rinard, M.: Incrementalized Pointer and Escape Analysis. In: Proc. of ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’01), volume 36(5), SIGPLAN Notices, pp. 35–46. Snowbird, Utah, USA (2001).Google Scholar
  50. 50.
    Whaley, J., Lam, M.S.: Cloning-Based Context-Sensitive Pointer Alias Analysis Using Binary Decision Diagrams. In: Pugh, W., Chambers, C. (eds.), Proc. of ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDI’04), pp. 131–144. ACM, Washington, DC, USA (2004).CrossRefGoogle Scholar
  51. 51.
    Whaley, J., Rinard, M.C.: Compositional Pointer and Escape Analysis for Java Programs. In: 1999 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA’99), volume 34(1), SIGPLAN Notices, pp. 187–206. Denver, Colorado, USA (1999).Google Scholar
  52. 52.
    Winskel, G.: The Formal Semantics of Programming Languages. The MIT Press (1993).Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.University of LeedsUnited Kingdom
  2. 2.Università di VeronaItaly

Personalised recommendations