A Novel Chimeric Anti-HCV Peptide Derived from Camel Lactoferrin and Molecular Level Insight on Its Interaction with E2

  • Mojtaba Tahmoorespur
  • Marjan Azghandi
  • Ali Javadmanesh
  • Zahra Meshkat
  • Mohammad Hadi SekhavatiEmail author


In the present study, a novel chimeric peptide was derived from camel lactoferrin designed with a considerable anti-HCV activity and its neutralization mechanism was predicted by molecular modelling tools. A novel anti-HCV peptide derived from camel lactoferrin (cLF36) was designed and expressed it recombinantly in HEK-293-T cells. Anti-viral activity of this peptide was evaluated against hepatitis C virus by Real-time PCR assay in vitro. Finally, to have a better insight into the mode of action of peptide on HCV entry inhibition, we examined the interaction of cLF36 with envelope glycoprotein E2 by molecular dynamic simulation. This chimeric peptide had significant inhibitory effects on both HCV entry (44 µg/mL) and viral replication (88 µg/mL) under in vitro (p > 0.01). Moreover, cLF36 peptide was not toxic to HEK cells as a normal cell at twofold of its anti-viral concentrations for HCV entry and even at concentrations as high as 250 µg/mL exhibited minimal hemolysis (2.5%) against human RBCs (red blood cells). The results of in silico analysis showed that cLF36 interacted with β-sandwich and front layer of E2 protein as two potential CD81 binding sites. We generated and characterized a new camel lactoferrin derived HCV inhibitors. This peptide blocked HCV entry and also intracellular HCV replication in cell culture experiment.


Anti-HCV peptide Camel Lactoferrin Envelope glycoprotein E2 Molecular dynamic simulation 



The authors would also like to express their gratitude to the Ferdowsi University of Mashhad for their support. The present study was funded by INFS ( of I.R.I with Grant No. 93,025,031.

Compliance with Ethical Standards

Conflict of interest

All Authors declare that they have no conflict of interest.

Research Involving Human and Animal Participants

Approvals to conduct experimental protocols to study hemolysis on human red cells were approved by the Committee on Publication Ethics (COPE), where this work was done. Human red cells were from volunteer Mohammad Hadi Sekhavati, who signed the informed consent for this study and is also author of this report.


  1. Abe K, Nozaki A, Tamura K, Ikeda M, Naka K, Dansako H, Hoshino HO, Tanaka K, Kato N (2007) Tandem repeats of lactoferrin-derived anti-hepatitis C virus peptide enhance antiviral activity in cultured human hepatocytes. Microbiol Immunol 51(1):117–125. CrossRefPubMedGoogle Scholar
  2. Albar AH, El-Fakharany EM, Almehdar HA, Uversky VN, Redwan EM (2017) In vitro exploration of the anti-HCV potential of the synthetic spacer peptides derived from human, bovine, and camel lactoferrins. Protein Pept Lett 24(10):909–921. CrossRefPubMedGoogle Scholar
  3. Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M (1992) Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol 73(6):472–479. CrossRefPubMedGoogle Scholar
  4. Berendsen HJ, Postma JV, van Gunsteren WF, DiNola ARHJ, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690. CrossRefGoogle Scholar
  5. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(1):252–258. CrossRefGoogle Scholar
  6. Bolscher JG, Adao R, Nazmi K, van den Keybus PA, van’t Hof W, Amerongen AVN, Bastos M, Veerman EC (2009) Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides. Biochimie 91(1):123–132. CrossRefPubMedGoogle Scholar
  7. Bräu N (2012) Evaluation of the hepatitis C virus-infected patient: the initial encounter. Clin Infect Dis 56(6):853–860CrossRefGoogle Scholar
  8. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. CrossRefPubMedGoogle Scholar
  9. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chang CC, Hsu HJ, Yen JH, Lo SY, Liou JW (2017) A sequence in the loop domain of hepatitis C virus E2 protein identified in silico as crucial for the selective binding to human CD81. PLoS ONE 12(5):e0177383. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20(1):45–50CrossRefGoogle Scholar
  12. Cudic M, Condie BA, Weiner DJ, Lysenko ES, Xiang ZQ, Insug O, Bulet P, Otvos L Jr (2002) Development of novel antibacterial peptides that kill resistant isolates. Peptides 23(12):2071–2083. CrossRefPubMedGoogle Scholar
  13. Daneshmand A, Kermanshahi H, Sekhavati MH, Javadmanesh A, Ahmadian M (2019) Antimicrobial peptide, cLF36, affects performance and intestinal morphology, microflora, junctional proteins, and immune cells in broilers challenged with E. coli. Sci Rep 9(1):1–9CrossRefGoogle Scholar
  14. Drummer HE, Boo I, Maerz AL, Poumbourios P (2006) A conserved Gly436-Trp-Leu-Ala-Gly-Leu-Phe-Tyr motif in hepatitis C virus glycoprotein E2 is a determinant of CD81 binding and viral entry. J Virol 80(16):7844–7853. CrossRefPubMedPubMedCentralGoogle Scholar
  15. El-Awady MK, Tabll AA, Redwan ERM, Youssef S, Omran MH, Thakeb F, El-Demellawy M (2005) Flow cytometric detection of hepatitis C virus antigens in infected peripheral blood leukocytes: binding and entry. World J Gastroenterol 11(33):5203–5208. CrossRefPubMedPubMedCentralGoogle Scholar
  16. El-Fakharany EM, Abedelbaky N, Haroun BM, Sánchez L, Redwan NA, Redwan EM (2012) Anti-infectivity of camel polyclonal antibodies against hepatitis C virus in Huh7. 5 hepatoma. Virol J 9(1):201. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Flint M, McKeating JA (2000) The role of the hepatitis C virus glycoproteins in infection. Rev Med Virol 10(2):101–117. CrossRefPubMedGoogle Scholar
  18. Gogela NA, Lin MV, Wisocky JL, Chung RT (2015) Enhancing our understanding of current therapies for hepatitis C virus (HCV). Current HIV/AIDS Reports 12(1):68–78. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gower E, Estes C, Blach S, Razavi-Shearer K, Razavi H (2014) Global epidemiology and genotype distribution of the hepatitis C virus infection. J Hepatol 61(1):45–57. CrossRefGoogle Scholar
  20. Hermans J, Berendsen HJ, Van Gunsteren WF, Postma JP (1984) A consistent empirical potential for water–protein interactions. Biopolymers 23(8):1513–1518. CrossRefGoogle Scholar
  21. Iyengar S, Tay-Teo K, Vogler S, Beyer P, Wiktor S, de Joncheere K, Hill S (2016) Prices, costs, and affordability of new medicines for hepatitis C in 30 countries: an economic analysis. PLoS Med 13(5):e1002032. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jordan M, Schallhorn A, Wurm FM (1996) Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res 24(4):596–601CrossRefGoogle Scholar
  23. Kang JH, Lee MK, Kim KL, HAHM KS (1996) Structure–biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin. Int J Pept Protein Res 48(4):357–363. CrossRefPubMedGoogle Scholar
  24. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol 9(9):646–652. CrossRefGoogle Scholar
  25. Keck ZY, Angus AG, Wang W, Lau P, Wang Y, Gatherer D, Patel AH, Foung SK (2014) Non-random escape pathways from a broadly neutralizing human monoclonal antibody map to a highly conserved region on the hepatitis C virus E2 glycoprotein encompassing amino acids 412–423. PLoS Pathog 10(8):e1004297. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Khan AG, Whidby J, Miller MT, Scarborough H, Zatorski AV, Cygan A, Price AA, Yost SA, Bohannon CD, Jacob J, Grakoui A (2014) Structure of the core ectodomain of the hepatitis C virus envelope glycoprotein 2. Nature 509(7500):381. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kong L, Giang E, Nieusma T, Kadam RU, Cogburn KE, Hua Y, Dai X, Stanfield RL, Burton DR, Ward AB, Wilson IA (2013) Hepatitis C virus E2 envelope glycoprotein core structure. Science 342(6162):1090–1094. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Law M, Maruyama T, Lewis J, Giang E, Tarr AW, Stamataki Z, Gastaminza P, Chisari FV, Jones IM, Fox RI, Ball JK (2008) Broadly neutralizing antibodies protect against hepatitis C virus quasi species challenge. Nat Med 14(1):25. CrossRefPubMedGoogle Scholar
  29. Liao Y, El-Fakkarany E, Lönnerdal B, Redwan EM (2012) Inhibitory effects of native and recombinant full-length camel lactoferrin and its N and C lobes on hepatitis C virus infection of Huh7. 5 cells. J Med Microbiol 61(3):375–383. CrossRefPubMedGoogle Scholar
  30. Linde A, Ross CR, Davis EG, Dib L, Blecha F, Melgarejo T (2008) Innate immunity and host defense peptides in veterinary medicine. J Vet Intern Med 22(2):247–265. CrossRefPubMedGoogle Scholar
  31. Majumdar A, Kitson MT, Roberts SK (2016) Systematic review: current concepts and challenges for the direct-acting antiviral era in hepatitis C cirrhosis. Aliment Pharmacol Ther 43(12):1276–1292. CrossRefPubMedGoogle Scholar
  32. Maupetit J, Derreumaux P, Tuffery P (2009) PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Res 37(2):498–503. CrossRefGoogle Scholar
  33. Maupetit J, Derreumaux P, Tufféry P (2010) A fast method for large-scale De Novo peptide and miniprotein structure prediction. J Comput Chem 31(4):726–738. CrossRefPubMedGoogle Scholar
  34. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157CrossRefGoogle Scholar
  35. Nozaki A, Ikeda M, Naganuma A, Nakamura T, Inudoh M, Tanaka K, Kato N (2003) Identification of a lactoferrin-derived peptide possessing binding activity to hepatitis C virus E2 envelope protein. J Biol Chem 278(120):10162–10173. CrossRefPubMedGoogle Scholar
  36. Owsianka AM, Timms JM, Tarr AW, Brown RJ, Hickling TP, Szwejk A, Bienkowska-Szewczyk K, Thomson BJ, Patel AH, Ball JK (2006) Identification of conserved residues in the E2 envelope glycoprotein of the hepatitis C virus that are critical for CD81 binding. J Virol 80(17):8695–8704. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Owsianka AM, Tarr AW, Keck ZY, Li TK, Witteveldt J, Adair R, Foung SK, Ball JK, Patel AH (2008) Broadly neutralizing human monoclonal antibodies to the hepatitis C virus E2 glycoprotein. J Gen Virol 89(3):653–659. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, Weiner AJ, Houghton M, Rosa D, Grandi G, Abrignani S (1998) Binding of hepatitis C virus to CD81. Science 282(5390):938–941. CrossRefPubMedGoogle Scholar
  39. Pirkhezranian Z, Tanhaeian A, Mirzaii M, Sekhavati MH (2019) Expression of Enterocin-P in HEK platform: evaluation of its cytotoxic effects on cancer cell lines and its potency to interact with cell-surface glycosaminoglycan by molecular modeling. Int J Pept Res Ther. CrossRefGoogle Scholar
  40. Qin ZL, Ju HP, Liu Y, Gao TT, Wang WB, Aurelian L, Zhao P, Qi ZT (2013) Fetal bovine serum inhibits hepatitis C virus attachment to host cells. J Virol Methods 193(2):261–269. CrossRefPubMedGoogle Scholar
  41. Redwan EM, EL-Fakharany EM, Uversky VN, Linjawi MH (2014) Screening the anti-infectivity potentials of native N-and C-lobes derived from the camel lactoferrin against hepatitis C virus. BMC Complement Altern Med 14(1):219. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sabahi A (2009) Hepatitis C virus entry: the early steps in the viral replication cycle. Virol J 6(1):1–11. CrossRefGoogle Scholar
  43. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (No. Ed. 2). Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  44. Sang Y, Blecha F (2009) Porcine host defense peptides: expanding repertoire and functions. Dev Comp Immunol 33(3):334–343. CrossRefPubMedGoogle Scholar
  45. Shah N, Pierce T, Kowdley KV (2013) Review of direct-acting antiviral agents for the treatment of chronic hepatitis C. Expert Opin Investig Drugs 22(9):1107–1121. CrossRefPubMedGoogle Scholar
  46. Skalickova S, Heger Z, Krejcova L, Pekarik V, Bastl K, Janda J, Kostolansky F, Vareckova E, Zitka O, Adam V, Kizek R (2015) Perspective of use of antiviral peptides against influenza virus. Viruses 7(10):5428–5442. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Tanhaeian A, Ahmadi FS, Sekhavati MH, Mamarabadi M (2018) Expression and purification of the main component contained in camel milk and its antimicrobial activities against bacterial plant pathogens. Probiotics Antimicrob Proteins 10(4):787–793. CrossRefPubMedGoogle Scholar
  48. Tanhaeian A, Jaafari MR, Ahmadi FS, Vakili-Ghartavol R, Sekhavati MH (2019) Secretory expression of a chimeric peptide in Lactococcus lactis: assessment of its cytotoxic activity and a deep view on its interaction with cell-surface glycosaminoglycans by molecular modeling. Probiotics Antimicrob Proteins 11(3):1034–1041CrossRefGoogle Scholar
  49. Tanhaiean A, Azghandi M, Razmyar J, Mohammadi E, Sekhavati MH (2018) Recombinant production of a chimeric antimicrobial peptide in E. coli and assessment of its activity against some avian clinically isolated pathogens. Microb Pathog 122:73–78CrossRefGoogle Scholar
  50. Tanhaieian A, Sekhavati MH, Ahmadi FS, Mamarabadi M (2018) Heterologous expression of a broad-spectrum chimeric antimicrobial peptide in Lactococcus lactis: its safety and molecular modeling evaluation. Microb Pathog 125:51–59CrossRefGoogle Scholar
  51. Teimourpour R, Meshkat Z, Gholoubi A, Nomani H, Rostami S (2015) Viral load analysis of hepatitis C virus in Huh7. 5 cell culture system. Jundishapur J Microbiol 8(5):e19279. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K (1991) Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 74(12):4137–4142. CrossRefPubMedGoogle Scholar
  53. Van der Kraan MI, Groenink J, Nazmi K, Veerman EC, Bolscher JG, Amerongen AVN (2004) Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides 25(2):177–183. CrossRefPubMedGoogle Scholar
  54. Van der Kraan MI, Nazmi K, Teeken A, Groenink J, van’t Hof W, Veerman EC, Bolscher JG, Amerongen AVN (2005) Lactoferrampin, an antimicrobial peptide of bovine lactoferrin, exerts its candidacidal activity by a cluster of positively charged residues at the C-terminus in combination with a helix-facilitating N-terminal part. Biol Chem 386(2):137–142. CrossRefPubMedGoogle Scholar
  55. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. CrossRefGoogle Scholar
  56. Vogel HJ, Schibli DJ, Jing W, Lohmeier-Vogel EM, Epand RF, Epand RM (2002) Towards a structure–function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides. Biochem Cell Biol 80(1):49–63. CrossRefPubMedGoogle Scholar
  57. Vorland LH, Ulvatne H, Andersen J, Haukland HH, Rekdal Ø, Svendsen JS, Gutteberg TJ (1999) Antibacterial effects of lactoferricin B. Scand J Infect Dis 31(2):179–184. CrossRefPubMedGoogle Scholar
  58. Warren L (2002) The PyMOL molecular graphics system. DeLano Scientific LLC, San Carlos, CA, USAGoogle Scholar
  59. Yin P, Zhang L, Ye F, Deng Y, Lu S, Li YP, Zhang L, Tan W (2017) A screen for inhibitory peptides of hepatitis C virus identifies a novel entry inhibitor targeting E1 and E2. Sci Rep 7(1):1–10. CrossRefGoogle Scholar
  60. York DM, Darden TA, Pedersen LG (1993) The effect of long-range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and truncated list methods. J Chem Phys 99(10):8345–8348. CrossRefGoogle Scholar
  61. Zaiou M (2007) Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med 85(4):317–329. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Mojtaba Tahmoorespur
    • 1
  • Marjan Azghandi
    • 1
  • Ali Javadmanesh
    • 1
  • Zahra Meshkat
    • 2
  • Mohammad Hadi Sekhavati
    • 1
    Email author
  1. 1.Department of Animal Science, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
  2. 2.Antimicrobial Resistance Research CenterMashhadIran

Personalised recommendations