A Review on Bioactive Porcine Peptide, Protegrin-1

  • Shruti Sunil Ranade
  • Rajasekaran RamalingamEmail author


Multi drug resistance is a major problem of the twenty first century. In order to combat this issue, there is an urgent need in the pharmaceutical industry, for novel therapeutic agents. Antimicrobial peptides such as protegrins which exhibit non-specific membranolytic action can be viewed as probable therapeutic agents and replace conventional antibiotics. Protegrin-1 (PG-1) is a peptide isolated from porcine leucocytes. Its primary role is its antimicrobial activity against a broad-spectrum of gram-positive as well as gram-negative bacteria and fungi. Its antagonistic activity can be accounted by its pore formation mechanism in microbial membranes. In addition, PG-1 has multiple roles viz., anticancer and antiviral activity, immunomodulatory functions and numerous applications which increase its suitability as a potential therapeutic agent. This review paper presents a comprehensive overview of biological roles, lytic mechanism of action and applications of PG-1, thus providing a thorough understanding of this β-sheet peptide, which structurally resembles defensin peptides.


Multi-drug resistance Therapeutic agent Antimicrobial peptides Protegrin-1 



Antimicrobial peptide


Atomic force microscopy










Grazing incidence X-ray diffraction


Molecular dynamics


Nuclear magnetic resonance


Oriented circular dichroism














World Health Organization



The authors thank Vellore Institute of Technology (Deemed to be University) for providing ‘VIT SEED GRANT’ for carrying out this review on protegrin-1.

Author Contributions

Conceptualization: [RR]; Literature survey, data analysis and drafting the article: [SSR]; Critical revision of article: [RR].

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have conflict of interest.

Informed Consent

Informed consent was obtained from all individual participants included in the study.


  1. Albrecht MT, Wang W, Shamova O, Lehrer RI, Schiller NL (2002) Binding of protegrin-1 to Pseudomonas aeruginosa and Burkholderia cepacian. Respir Res 3:18CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aumelas A, Mangoni M, Roumestand C, Chiche L, Despaux E, Grassy G, Calas B, Chavanieu A (1996) Synthesis and solution structure of the antimicrobial peptide protegrin-1. Eur J Biochem 237:575–583CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bolintineanu DS, Langham AA, Davis HT, Kaznessis YN (2007) Molecular dynamics simulations of three protegrin-type antimicrobial peptides: interplay between charges at the termini β-sheet structure and amphiphilic interactions. Mol Simul 33:809–819CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bolintineanu D, Hazrati E, Davis HT, Lehrer RI, Kaznessis YN (2010) Antimicrobial mechanism of pore-forming protegrin peptides: 100 pores to kill E. coli. Peptides 31:1–8CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bolintineanu DS, Sayyed-Ahmad A, Kaznessis DHT (2009) Poisson-Nernst-Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore. PLoS Comput Biol 5:e1000277CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bolintineanu DS, Vivcharuk V, Kaznessis YN (2012) Multiscale models of the antimicrobial peptide protegrin-1 on gram-negative bacteria membranes. Int J Mol Sci 13:11000–11011CrossRefPubMedPubMedCentralGoogle Scholar
  7. Buffy JJ, Waring AJ, Lehrer RI, Hong M (2003a) Immobilization and aggregation of the antimicrobial peptide Protegrin-1 in lipid bilayers investigated by solid-State NMR. Biochemistry 42:13725–13734CrossRefPubMedPubMedCentralGoogle Scholar
  8. Buffy JJ, Hong T, Yamaguchi S, Waring AJ, Lehrer RI, Hong M (2003b) Solid-state NMR investigation of the depth of insertion of protegrin-1 in lipid bilayers using paramagnetic Mn2+. Biophys J 85:2363–2373CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chapman MR, Lam KLH, Waring AJ, Lehrer RI, Lee KYC (2009) The origin of antimicrobial resistance and fluidity dependent membrane structural transformation by antimicrobial peptide Protegrin-1. Biophys J 96:550aCrossRefGoogle Scholar
  10. Cheung QCK, Turner PV, Song C, Wu D, Cai HY, MacInnes JI, Li J (2008) Enhanced resistance to bacterial infection in Protegrin-1 transgenic mice. Antimicrob Agents Chemother 52:1812–1819CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cordes J, Wittersheim M, Harder J, Gläser R (2014) The skin's own antibiotics. Important features of antimicrobial peptides for clinical practice. Der Hautarzt 65:50–55CrossRefGoogle Scholar
  12. Drin G, Temsamani J (2002) Translocation of protegrin I through phospholipid membranes: role of peptide folding. Biochim Biophys Acta 1559:160–170CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fahrner RL, Dieckmann T, Harwig SS, Lehrer RI, Eisenberg D, Feigon J (1996) Solution structure of protegrin-1 a broad-spectrum antimicrobial peptide from porcine leukocytes. Chem Biol 3:543–550CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fortney K, Totten PA, Lehrer RI, Spinola SM (1998) Haemophilus ducreyi is susceptible to protegrin. Antimicrob Agents Chemother 42:2690–2693CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gidalevitz D, Ishitsuka Y, Muresan AS, Konovalov O, Waring AJ, Lehrer RI, Lee KYC (2003) Interaction of antimicrobial peptide protegrin with biomembranes. Proc Natl Yang Acad Sci 100:6302–6307CrossRefGoogle Scholar
  16. Gottler LM, de la Salud BR, Shelburne CE, Ramamoorthy A, Marsh ENG (2008) Using fluorous amino acids to probe the effects of changing hydrophobicity on the physical and biological properties of the beta-hairpin antimicrobial peptide protegrin-1. Biochemistry 47:9243–9250CrossRefPubMedPubMedCentralGoogle Scholar
  17. Guo C, Cong P, He Z, Mo D, Zhang W, Chen Y, Liu X (2015) Inhibitory activity and molecular mechanism of protegrin-1 against porcine reproductive and respiratory syndrome virus in vitro. Antivir Ther 20:573–582CrossRefPubMedPubMedCentralGoogle Scholar
  18. GuoDong W (2013) Interaction in vitro between antibacterial peptide protegrin-1 and antibiotics to pathogenic E. coli. J Henan Agric Sci 42:124–127Google Scholar
  19. Gupta K, Kotian A, Subramanian H, Daniell H, Ali H (2015) Activation of human mast cells by retrocyclin and protegrin highlight their immunomodulatory and antimicrobial properties. Oncotarget 6:28573–28587.
  20. Heller WT (1999) A comparative study of the membrane-active beta-sheet peptide protegrin with the alpha-helical peptide alamethicin (Thesis).
  21. Heller WT, Waring AJ, Lehrer RI, Huang HW (1998) Multiple states of beta-sheet peptide protegrin in lipid bilayers. Biochemistry 37:17331–17338CrossRefPubMedPubMedCentralGoogle Scholar
  22. Heller WT, Waring AJ, Lehrer RI, Harroun TA, Weiss TM, Yang L, Huang HW (2000) Membrane thinning effect of the β-Sheet antimicrobial protegrin. Biochemistry 39:139–145CrossRefPubMedPubMedCentralGoogle Scholar
  23. Henderson JM, Burck J, Lehrer R, Waring AJ, Majewski J, Ulrich AS, Lee KYC (2014) Cholesterol incorporation in membranes attenuates the disruption ability of antimicrobial peptide Protegrin-1. Biophys J 106:85aCrossRefGoogle Scholar
  24. Henderson JM, Cao KD, Gong ZL, Tietjen GT, Heffern CTR, Kerr D, Nishanth I, Indroneil R, Alan JW, Mati M, Binhua L, Sushil S, Jaroslaw M, Lee KYC(2015) Activity of antimicrobial peptide Protegrin-1 is tuned by membrane cholesterol content. Biophys J 108:550a–551a.
  25. Henderson JM, Iyengar NS, Lam KLH, Maldonado E, Suwatthee T, Roy I, Waring AJ, Lee KYC (2019) Beyond electrostatics: Antimicrobial peptide selectivity and the influence of cholesterol-mediated fluidity and lipid chain length on protegrin-1 activity. Biochim Biophys Acta. CrossRefGoogle Scholar
  26. Henderson JM, Maldonado E, Lehrer R, Waring AJ, Lee KYC (2012) Membrane disruption by antimicrobial peptide Protegrin-1 is tuned by incorporation of cholesterol and phosphoethanolamine lipids. Biophys J 102:89aCrossRefGoogle Scholar
  27. Hill EK, Li J (2017) Production of protegrin-1 with a matrix metalloproteinase/elastase cleavage site and its therapeutic potential for skin wound infections. Ann Biol Sci.
  28. Huynh E, Penney J, Caswell J, Li J (2019) Protective effects of protegrin in dextran sodium sulfate-induced murine colitis. Front Pharmacol 10:156.
  29. Iyengar NS, Henderson JM, Suwatthee T, Roy I, Waring AJ, Lee KYC (2016) A thermodynamic study of the effects of cholesterol on the activity of antimicrobial peptide Protegrin-1. Biophys J 110:355a–356aCrossRefGoogle Scholar
  30. Jang H, Arce FT, Mustata M, Ramachandran S, Capone R, Nussinov R, Lal R (2011) Antimicrobial protegrin-1 forms amyloid-like fibrils with rapid kinetics suggesting a functional link. Biophys J 100:1775–1783. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jang H, Ma B, Woolf TB, Nussinov R (2006) Interaction of Protegrin-1 with lipid bilayers: membrane thinning effect. Biophys J 91:2848–2859CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jang H, Ma B, Nussinov R (2007) Conformational study of the protegrin-1 (PG-1) dimer interaction with lipid bilayers and its effect. BMC Struct Biol 7:21CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jang H, Ma B, Lal R, Nussinov R (2008) Models of toxic β-sheet channels of Protegrin-1 suggest a common subunit organization motif shared with toxic Alzheimer β-amyloid ion channels. Biophys J 95(10):4631–4642CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jing W, Prenner EJ, Vogel HJ, Waring AJ, Lehrer RI, Lohner K (2005) Headgroup structure and fatty acid chain length of the acidic phospholipids modulate the interaction of membrane mimetic vesicles with the antimicrobial peptide protegrin-1. J Pept Sci 11:735–743CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kandasamy SK, Larson RG (2007) Binding modes of protegrin-1 a beta-strand antimicrobial peptide in lipid bilayers. Mol Simul 33:799–807CrossRefGoogle Scholar
  36. Khandelia H, Kaznessis YN (2007) Structure of the antimicrobial β-hairpin peptide protegrin-1 in a DLPC lipid bilayer investigated by molecular dynamics simulation. BBA Biomembranes 1768:509–520. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kolosova OA, Usachev KS, Aganov AV, Klochkov VV (2016) Antimicrobial peptide protegrins interact with DPC micelles by apolar hydrophobic cluster: structural studies by high-resolution NMR spectroscopy. Bionanoscience 6:317–319CrossRefGoogle Scholar
  38. Kokryakov VN, Harwig SSL, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV, Korneva HA, Lehrer RI (1993) Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett 327:231–236CrossRefPubMedPubMedCentralGoogle Scholar
  39. Knyght I, Clifton L, Saaka Y, Lawrence MJ, Barlow DJ (2016) Interaction of the antimicrobial peptides rhesus θ-defensin and porcine Protegrin-1 with anionic phospholipid monolayers. Langmuir 32:7403–7410CrossRefGoogle Scholar
  40. Lai PK, Kaznessis YN (2018) Insights into membrane translocation of protegrin antimicrobial peptides by multistep molecular dynamics simulations. ACS Omega 3:6056–6065CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lam KLH (2007) Mechanism of membrane disruption by antimicrobial peptide Protegrin-1 (p. K1.013). Presented at the APS March Meeting Abstracts.
  42. Lam KLH, Ishitsuka Y, Cheng Y, Chien K, Waring AJ, Lehrer RI, Lee KYC (2006) Mechanism of supported membrane disruption by antimicrobial peptide protegrin-1. J Phys Chem B 110:21282–21286CrossRefPubMedPubMedCentralGoogle Scholar
  43. Langham AA, Kaznessis YN (2006) Mol Simul 32:193–201CrossRefGoogle Scholar
  44. Langham AA, Khandelia H, Kaznessis YN (2006) How can a beta-sheet peptide be both a potent antimicrobial and harmfully toxic? Molecular dynamics simulations of protegrin-1 in micelles. Biopolymers 84:219–231CrossRefPubMedPubMedCentralGoogle Scholar
  45. Langham AA, Ahmad AS, Kaznessis YN (2008) On the nature of antimicrobial activity: a model for Protegrin-1 pores. J Am Chem Soc 130:4338–4346CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lazaridis T, He Y, Prieto L (2013) Membrane interactions and pore formation by the antimicrobial peptide protegrin. Biophys J 104:633–642. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lee SB, Li B, Jin S, Daniell H (2011) Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol J 9–100–115.
  48. Lipkin R, Lazaridis T (2017) Computational prediction of the optimal oligomeric state for membrane-inserted β-barrels of protegrin-1 and related mutants. J Pept Sci 23:334–345CrossRefPubMedPubMedCentralGoogle Scholar
  49. Liu Y, Kamesh AC, Xiao Y, Sun V, Hayes M, Daniell H, Koo H (2016) Topical delivery of low-cost protein drug candidates made in chloroplasts for biofilm disruption and uptake by oral epithelial cells. Biomaterials 105:156–166CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mangoni ME, Aumelas A, Charnet P, Roumestand C, Chiche L, Despaux E, Grassy G, Calas B, Chavanieu A (1996) Change in membrane permeability induced by protegrin 1: implication of disulphide bridges for pore formation. FEBS Lett 383:93–98.
  51. Mani R, Buffy JJ, Waring AJ, Lehrer RI, Hong M (2004) Solid-state NMR investigation of the selective disruption of lipid membranes by Protegrin-1. Biochemistry 43:13839–13848CrossRefPubMedPubMedCentralGoogle Scholar
  52. Morroni G, Simonetti O, Brenciani A, Brescini L, Kamysz W, Kamysz E, Neubauer D, Caffarini M, Orciani M, Giovanetti E, OffidaniA GA, Cirioni O (2019) In vitro activity of Protegrin-1, alone and in combination with clinically useful antibiotics, against Acinetobacter baumannii strains isolated from surgical wounds. Med Microbiol Immunol 208:877–883CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mirgorodskaya OA, Shevchenko AA, Abdalla KO, Chernushevich IV, Egorov TA, Musoliamov AX, Kokryakov VN, Shamova OV (1993) Primary structure of three cationic peptides from porcine neutrophils. Sequence determination by the combined usage of electrospray ionization mass spectrometry and Edman degradation. FEBS Lett 330:339–342CrossRefPubMedPubMedCentralGoogle Scholar
  54. Miyakawa Y, Ratnakar P, Rao AG, Costello ML, Mathieu-Costello O, Lehrer RI, Catanzaro A (1996) In vitro activity of the antimicrobial peptides human and rabbit defensins and porcine leukocyte protegrin against Mycobacterium tuberculosis. Infect Immun 64:926–932PubMedPubMedCentralGoogle Scholar
  55. Maldonado E, Henderson M, Lee KY, Lehrer R, Waring AJ (2011) Assessing pore forming capability of Protegrin-1 in lipid bilayers of varying cholesterol content. Biophys J 100:336CrossRefGoogle Scholar
  56. Neville F, Ishitsuka Y, Hodges CS, Konovalov O, Waring AJ, Lehrer R, Lee KY, Gidalevitz D (2008) Protegrin interaction with lipid monolayers: grazing incidence X-ray diffraction and X-ray reflectivity study. Soft Matter 4:1665–1674CrossRefPubMedPubMedCentralGoogle Scholar
  57. Niu M, Chai S, You X, Wang W, Qin C, Gong Q, Zhang T, Wan P (2015) Expression of porcine protegrin-1 in Pichia pastoris and its anticancer activity in vitro. Exp Ther Med 9:1075–1079CrossRefPubMedPubMedCentralGoogle Scholar
  58. Osakowicz C (2018) Protective and anti-inflammatory effects of Protegrin-1 on Citrobacter rodentium intestinal infection in mice (Doctoral dissertation).
  59. Patiño-Rodríguez O, Ortega-Berlanga B, Llamas-González YY, Flores-Valdez MA, Herrera-Díaz A, Montes-de-Oca-Luna R, Korban SS, Alpuche-Solís ÁG (2013) Transient expression and characterization of the antimicrobial peptide protegrin-1 in Nicotiana tabacum for control of bacterial and fungal mammalian pathogens. Plant Cell Tissue Organ Cul 115:99–106CrossRefGoogle Scholar
  60. Penney J, Li J(2018). Protegrin 1 enhances innate cellular defense via the insulin-like growth factor 1 receptor pathway. Front Cell Infect Microbiol 8:330.
  61. Qing-hua ZYRC, Zhi-yong HJHF, Zhu-ying ZCL (2008). The effect of achyranthes bidentata polysaccharides on Protegrin-1 mRNA expression in weaned piglets. Chin J Anim NutrGoogle Scholar
  62. Rui H, Lee J, Im W (2009) Comparative molecular dynamics simulation studies of protegrin-1 monomer and dimer in two different lipid bilayers. Biophys J 97:787–795CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rui H, Im W (2010) Protegrin-1 orientation and physicochemical properties in membrane bilayers studied by potential of mean force calculations. J Comput Chem 31:2859–2867PubMedPubMedCentralGoogle Scholar
  64. Roumestand C, Louis V, Aumelas A, Grassy G, Calas B, Chavanieu A (1998) Oligomerization of protegrin-1 in the presence of DPC micelles. A proton high-resolution NMR study. FEBS Lett 421:263–267CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sayyed-Ahmad A, Kaznessis YN (2009) Determining the orientation of protegrin-1 in DLPC bilayers using an implicit solvent-membrane model. PLoS ONE 4:e4799CrossRefPubMedPubMedCentralGoogle Scholar
  66. Shruti SR, Rajasekaran R (2019) Identification of protegrin-1 as a stable and nontoxic scaffold among protegrin family—a computational approach. J Biomol Struct Dyn 37:2430–2439CrossRefPubMedPubMedCentralGoogle Scholar
  67. Soundrarajan N, Park S, Le Van CQ, Cho HS, Raghunathan G, Ahn B, Song H, Kim JK, Park C (2019) Protegrin-1 cytotoxicity towards mammalian cells positively correlates with the magnitude of conformational changes of the unfolded form upon cell interaction. Sci Rep 9:1–12CrossRefGoogle Scholar
  68. Sugawara K, Shinohara H, Kadoya T, Kuramitz H (2016) Sensing lymphoma cells based on a cell-penetrating/apoptosis-inducing/electron-transfer peptide probe. Anal Chim Acta 924:106–113CrossRefPubMedPubMedCentralGoogle Scholar
  69. Steinberg DA, Hurst MA, Fujii CA, Kung AH, Ho JF, Cheng FC, Loury DJ, Fiddes JC (1997) Protegrin-1: a broad-spectrum rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother 41:1738–1742CrossRefPubMedPubMedCentralGoogle Scholar
  70. Steinstraesser L, Klein RD, Aminlari A, Fan MH, Khilanani V, Remick DG, Su GL, Wang SC (2001) Protegrin-1 enhances bacterial killing in thermally injured skin. Crit Care Med 29:1431–1437CrossRefPubMedPubMedCentralGoogle Scholar
  71. Steinstraesser L, Burghard O, Nemzek J, Fan MH, Merry A, Remick DI, Su GL, Steinau HU, Wang SC (2003) Protegrin-1 increases bacterial clearance in sepsis but decreases survival. Crit Care Med 31:221–226CrossRefPubMedPubMedCentralGoogle Scholar
  72. Su Y, Waring AJ, Ruchala P, Hong M (2011) Structures of β-Hairpin antimicrobial protegrin peptides in lipopolysaccharide membranes: mechanism of gram selectivity obtained from solid-state nuclear magnetic resonance. Biochemistry 50:2072–2083CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sun YH, Zhang N (2007) Developing process and activity mechanism of protegrin. Chin J Mod Appl Pharm 5:6Google Scholar
  74. Rothan HA, Mohamed Z, Sasikumar PG, Reddy KA, Rahman NA, Yusof R (2014) In vitro characterization of novel Protegrin-1 analogues against neoplastic cells. Int J Pept Res Ther 20:259–267CrossRefGoogle Scholar
  75. Tu Y, Wang Y, Xu C, Yao G, Shan T (2006) Effect of astragalus and astragalus polysaccharide on antimicrobial peptides PR-39 and protegrin-1 gene expression in pigs. Turk J Vet Anim Sci 30:325–330Google Scholar
  76. Vivcharuk V, Kaznessis Y (2010) Free energy profile of the interaction between a monomer or a dimer of Protegrin-1 in a specific binding orientation to a model lipid bilayer. J Phys Chem B 114:2790–2797CrossRefPubMedPubMedCentralGoogle Scholar
  77. Vivcharuk V, Kaznessis YN (2010) Dimerization of protegrin-1 in different environments. Int J Mol Sci 11:3177–3194CrossRefPubMedPubMedCentralGoogle Scholar
  78. Vivcharuk V, Kaznessis YN (2011) Thermodynamic analysis of protegrin-1 insertion and permeation through a lipid bilayer. J Phys Chem B 115:14704–14712CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wang Y, Shan T, Xu Z, Liu J, Feng J (2006) Effect of lactoferrin on the growth performance intestinal morphology and expression of PR-39 and protegrin-1 genes in weaned piglets. J Anim Sci 84:2636–2641CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wi S, Kim C (2008) Pore structure thinning effect and lateral diffusive dynamics of oriented lipid membranes interacting with antimicrobial peptide protegrin-1: 31P and 2H solid-state NMR study. J Phys Chem B 112:11402–11414CrossRefPubMedPubMedCentralGoogle Scholar
  81. WHO | Antimicrobial resistance: global report on surveillance 2014. (n.d.). WHO website. Accessed 19 Jul 2019.
  82. Yan J, Zhang C, Tang L, Kuang S (2015) Effect of dietary copper sources and concentrations on serum lysozyme concentration and Protegrin-1 gene expression in weaning piglets. Ital J Anim Sci 14:3709CrossRefGoogle Scholar
  83. Yan JY, Zhang C, Tang L, Kuang SY (2013) Research progress on antibacterial peptide protegrin. China Anim Husb Vet Med 7:54Google Scholar
  84. Yang L, Weiss TM, Lehrer RI, Huang HW (2000) Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys J 79:2002–2009CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zharkova MS, Orlov DS, Golubeva OY, Chakchir OB, Eliseev IE, Grinchuk TM, Shamova OV (2019) Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics—a novel way to combat antibiotic resistance? Front Cell Infect Microbiol 9:128CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biotechnology, School of Biosciences and TechnologyVellore Institute of Technology (Deemed To Be University)VelloreIndia

Personalised recommendations