Advertisement

The Human Cathelicidin LL-37, a Defensive Peptide Against Rotavirus Infection

  • Zohreh Hosseini
  • Mohammad Bagher Habibi NajafiEmail author
  • Masoud Yavarmanesh
  • Angila Ataei-PirkoohEmail author
Article
  • 15 Downloads

Abstract

LL-37 is a 37 amino acid long cationic peptide belonging to the cathelicidin family of antimicrobial peptides. Limited investigations have shown the antimicrobial potency of LL-37 against different viral infections. We aimed to investigate the effect of the human cathelicidin peptide LL-37 on rotavirus infection, as a causative agent of severe gastroenteritis in children. After evaluation of LL-37 toxicity using methyl thiazolyl tetrazolium and neutral red uptake assays on the MA-104 cells, antiviral activity was assessed both by tissue culture infectious dose 50 (TCID50) and quantitative Real-Time PCR assays. Indirect immunofluorescence assay (IFA) and hematoxylin and eosin (H&E) staining were also performed to further confirm the inhibitory effects of the LL-37 on rotavirus. The viability maintained more than 90% up to the concentration of 50 μg/mL of peptide. LL-37 exerted its antiviral effect only when cells were pre-treated with peptide prior to rotavirus infection. 50 μg/mL of LL-37 could result in 3.36 log10 TCID50 reduction in virus titer (p = 0.0001), and an inhibition rate of 82.2% in copy number of rotavirus genomic RNA was obtained. IFA showed that the expression of rotavirus antigens in cells pre-treated with 50 μg/mL LL-37 is noticeably lower than the virus control. H&E assay also showed that the size and formation of inclusion bodies are decreased in rotavirus-infected cells pre-treated with 50 μg/mL LL-37 as compared to the virus control. Our findings suggested that the LL-37 peptide may interfere with viral attachment or act as an immune regulator, promoting innate immune responses.

Keywords

Cathelicidin LL-37 Antiviral activity Rotavirus Antimicrobial peptides Innate immunity In vitro 

Notes

Acknowledgements

This work was financially supported by Ferdowsi University of Mashhad, Iran (Grant No. 39199).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Alagarasu K, Patil P, Shil P, Seervi M, Kakade M, Tillu H, Salunke A (2017) In-vitro effect of human cathelicidin antimicrobial peptide LL-37 on dengue virus type 2. Peptides 92:23–30CrossRefPubMedGoogle Scholar
  2. Bandurska K, Berdowska A, Barczyńska-Felusiak R, Krupa P (2015) Unique features of human cathelicidin LL-37. BioFactors 41:289–300CrossRefPubMedGoogle Scholar
  3. Barlow PG et al (2010) The human cathelicidin LL-37 preferentially promotes apoptosis of infected airway epithelium. Am J Respir Cell Mol Biol 43:692–702CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barlow PG et al (2011) Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS ONE 6:e25333CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bergman P, Johansson L, Asp V, Plant L, Gudmundsson GH, Jonsson AB, Agerberth B (2005) Neisseria gonorrhoeae downregulates expression of the human antimicrobial peptide LL-37. Cell Microbiol 7:1009–1017CrossRefPubMedGoogle Scholar
  6. Bergman P, Walter-Jallow L, Broliden K, Agerberth B, Soderlund J (2007) The antimicrobial peptide LL-37 inhibits HIV-1 replication. Curr HIV Res 5:410–415CrossRefPubMedGoogle Scholar
  7. Bucki R, Leszczyńska K, Namiot A, Sokołowski W (2010) Cathelicidin LL-37: a multitask antimicrobial peptide. Arch Immunol Ther Exp 58:15–25CrossRefGoogle Scholar
  8. Burnett E, Parashar U, Tate J (2018) Rotavirus vaccines: effectiveness, safety, and future directions. Paediatr Drugs 20:223–233CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carreño-Torres JJ, Gutiérrez M, Arias CF, López S, Isa P (2010) Characterization of viroplasm formation during the early stages of rotavirus infection. Virol J 7:350CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cheung W et al (2010) Rotaviruses associate with cellular lipid droplet components to replicate in viroplasms, and compounds disrupting or blocking lipid droplets inhibit viroplasm formation and viral replication. J Virol 84:6782–6798CrossRefPubMedPubMedCentralGoogle Scholar
  11. Crack L, Jones L, Malavige G, Patel V, Ogg G (2012) Human antimicrobial peptides LL-37 and human β-defensin-2 reduce viral replication in keratinocytes infected with varicella zoster virus. Clin Exp Dermatol 37:534–543CrossRefPubMedGoogle Scholar
  12. Crawford SE et al (2017) Rotavirus infection. Nat Rev Dis Primers 3:17083.  https://doi.org/10.1038/nrdp.2017.83 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Currie SM et al (2013) The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS ONE 8:e73659CrossRefPubMedPubMedCentralGoogle Scholar
  14. Desselberger U (2014) Rotaviruses. Virus Res 190:75–96CrossRefPubMedGoogle Scholar
  15. Dunnett CW (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50:1096–1121CrossRefGoogle Scholar
  16. Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160:171–177CrossRefPubMedGoogle Scholar
  17. Gordon Y, Romanowski E, Yates K, McDermott A (2004) Human cathelicidin (LL–37/hCAP–18) demonstrates direct antiviral activity against adenovirus and herpes simplex virus in vitro. Invest Ophthalmol Vis Sci 45:2256Google Scholar
  18. Gordon YJ, Huang LC, Romanowski EG, Yates KA, Proske RJ, McDermott AM (2005) Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr Eye Res 30:385–394CrossRefPubMedPubMedCentralGoogle Scholar
  19. Harcourt JL, McDonald M, Svoboda P, Pohl J, Tatti K, Haynes LM (2016) Human cathelicidin, LL-37, inhibits respiratory syncytial virus infection in polarized airway epithelial cells. BMC Res Notes 9:11CrossRefPubMedPubMedCentralGoogle Scholar
  20. Holloway G, Coulson BS (2013) Innate cellular responses to rotavirus infection. J Gen Virol 94:1151–1160CrossRefPubMedGoogle Scholar
  21. Hou M, Zhang N, Yang J, Meng X, Yang R, Li J, Sun T (2013) Antimicrobial peptide LL-37 and IDR-1 ameliorate MRSA pneumonia in vivo. Cell Physiol Biochem 32:614–623CrossRefPubMedGoogle Scholar
  22. Howell MD, Jones JF, Kisich KO, Streib JE, Gallo RL, Leung DY (2004) Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J Immunol 172:1763–1767CrossRefPubMedGoogle Scholar
  23. Jolly CL, Beisner BM, Holmes IH (2000) Rotavirus infection of MA104 cells is inhibited by Ricinus lectin and separately expressed single binding domains. Virology 275:89–97CrossRefPubMedGoogle Scholar
  24. Kiulia N, Hofstra N, Vermeulen L, Obara M, Medema G, Rose J (2015) Global occurrence and emission of rotaviruses to surface waters. Pathogens 4:229–255CrossRefPubMedPubMedCentralGoogle Scholar
  25. Knipping K, Garssen J, van’t Land B (2012) An evaluation of the inhibitory effects against rotavirus infection of edible plant extracts. Virol J 9:137CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lee S-H, Jun H-K, Lee H-R, Chung C-P, Choi B-K (2010) Antibacterial and lipopolysaccharide (LPS)-neutralising activity of human cationic antimicrobial peptides against periodontopathogens. Int J Antimicrob Agents 35:138–145CrossRefPubMedGoogle Scholar
  28. Lee C-C, Sun Y, Qian S, Huang HW (2011) Transmembrane pores formed by human antimicrobial peptide LL-37. Biophys J 100:1688–1696CrossRefPubMedPubMedCentralGoogle Scholar
  29. Matsumura T et al (2016) Antimicrobial peptide LL-37 attenuates infection of hepatitis C virus. Hepatol Res 46:924–932CrossRefPubMedGoogle Scholar
  30. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  31. Ramos R et al (2011) Wound healing activity of the human antimicrobial peptide LL37. Peptides 32:1469–1476CrossRefPubMedGoogle Scholar
  32. Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27:493–497CrossRefGoogle Scholar
  33. Smeianov V, Scott K, Reid G (2000) Activity of cecropin P1 and FA-LL-37 against urogenital microflora. Microbes Infect 2:773–777CrossRefPubMedGoogle Scholar
  34. Tanaka D, Miyasaki K, Lehrer R (2000) Sensitivity of Actinobacillus actinomycetemcomitans and Capnocytophaga spp. to the bactericidal action of LL-37: a cathelicidin found in human leukocytes and epithelium. Oral Microbiol Immunol 15:226–231CrossRefPubMedGoogle Scholar
  35. Tavakoli A, Hashemzadeh MS (2019) Inhibition of herpes simplex virus type 1 by copper oxide nanoparticles. J Virol Methods.  https://doi.org/10.1016/j.jviromet.2019.113688 CrossRefPubMedGoogle Scholar
  36. Tavakoli A et al (2018) Polyethylene glycol-coated zinc oxide nanoparticle: an efficient nanoweapon to fight against herpes simplex virus type 1. Nanomedicine 13:2675–2690CrossRefPubMedGoogle Scholar
  37. Travis SM et al (2000) Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun 68:2748–2755CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tripathi S, Tecle T, Verma A, Crouch E, White M, Hartshorn KL (2013) The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins. J Gen Virol 94:40CrossRefPubMedPubMedCentralGoogle Scholar
  39. Troeger C et al (2018) Rotavirus vaccination and the global burden of rotavirus diarrhea among children younger than 5 years. JAMA Pediatr 172:958–965CrossRefPubMedPubMedCentralGoogle Scholar
  40. van Harten R, van Woudenbergh E, van Dijk A, Haagsman H (2018) Cathelicidins: immunomodulatory antimicrobials. Vaccines 6:63CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Food Science and Technology, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
  2. 2.Department of Medical Virology, Faculty of MedicineIran University of Medical SciencesTehranIran

Personalised recommendations