An Update on Design and Pharmacology of Dendritic Poly(l-lysine)

  • Namita Hegde
  • Vinay Velingkar
  • Bala PrabhakarEmail author


Dendritic nanomaterials are unique due to their flexible architectures. So far, many structural analogues of dendritic poly(l-lysine) have been developed. Since its monomer unit is a biodegradable amino acid, poly(l-lysine) derived nanocarriers are biocompatible and safe. In this overview, structural diversity of dendritic poly(l-lysine) scaffold and patents filed on them so far are described. Furthermore, biopharmaceutical properties and therapeutic activity modulations observed from their drug delivery applications are highlighted. Poly(l-lysine) based dendriplexes, dendrosomes and dendrisomes remain novel and nearly unexplored. Since structural modifications can control the biopharmaceutical properties of aforementioned scaffold, achieving programmed drug delivery is possible. Many such structures have demonstrated not only excellent carrier characteristics but few intrinsic therapeutic activities also. A poly(l-lysine) dendrimer product VivaGel is currently under consideration in a new drug application category of various regulatory bodies. As dendritic poly(l-lysine) scaffold is biocompatible unlike many other nanocarriers, its clinical utilization would prove considerably beneficial.


Anticancer Biocompatible Dendrimer Dendron Peptide VivaGel 


Compliance with Ethical Standards

Conflict of interest

Authors do not have any conflict of interest.

Ethical Approval

None of the authors have performed experiments involving human participants or animals for this article.


  1. Agrawal P, Gupta U, Jain NK (2007) Glycoconjugated peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials 28:3349–3359PubMedCrossRefPubMedCentralGoogle Scholar
  2. Al-Jamal KT, Sakthivel T, Florence AT (2005) Dendrisomes: vesicular structures derived from a cationic lipidic dendron. J Pharm Sci 94:102–113PubMedCrossRefPubMedCentralGoogle Scholar
  3. Al-Jamal KT, Al-Jamal WT, Akerman S, Podesta JE, Yilmazer A, Turton JA, Bianco A, Vargesson N, Kanthou C, Florence AT, Tozer GM, Kostarelos K (2010) Systemic antiangiogenic activity of cationic poly-L-lysine dendrimer delays tumor growth. Proc Natl Acad Sci USA 107:3966–3971PubMedCrossRefPubMedCentralGoogle Scholar
  4. Al-Jamal KT, Al-Jamal WT, Kostarelos K, Turton JA, Florence AT (2012) Anti-angiogenic poly-L-lysine dendrimer binds heparin and neutralizes its activity. Results Pharma Sci 2:9–15PubMedCrossRefPubMedCentralGoogle Scholar
  5. Al-Jamal KT, Al-Jamal WT, Wang JT, Rubio N, Buddle J, Gathercole D, Zloh M, Kostarelos K (2013) Cationic poly-L-lysine dendrimer complexes doxorubicin and delays tumor growth in vitro and in vivo. ACS Nano 7:1905–1917PubMedCrossRefGoogle Scholar
  6. Anantharaman A, Rizvi MS, Sahal D (2010) Synergy with rifampin and kanamycin enhances potency, kill kinetics, and selectivity of de novo-designed antimicrobial peptides. Antimicrob Agents Chemother 54:1693–1699PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arney M, Atanasoska L, Warner R (2013) Medical devices for therapeutic agent delivery with polymeric regions that contain copolymers having both soft segments and uniform length hard segments. United States Patent 8440214Google Scholar
  8. Ashley G, Santi DV (2014) Controlled drug release from dendrimers. United States Patent 8703907Google Scholar
  9. Avaritt BR, Swaan PW (2015) Internalization and subcellular trafficking of poly-L-lysine dendrimers are impacted by the site of fluorophore conjugation. Mol Pharm 12:1961–1969PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bae Y, Rhim HS, Lee S, Ko KS, Han J, Choi JS (2017) Apoptin gene delivery by the functionalized polyamidoamine dendrimer derivatives induces cell death of U87-MG glioblastoma cells. J Pharm Sci 106:1618–1633PubMedCrossRefPubMedCentralGoogle Scholar
  11. Baigude H, Rana TM (2012) Interfering nanoparticles for silencing microRNAs. Methods Enzymol 509:339–353PubMedPubMedCentralCrossRefGoogle Scholar
  12. Baigude H, Su J, McCarroll J, Rana TM (2013) In vivo delivery of RNAi by reducible interfering nanoparticles (iNOPs). ACS Med Chem Lett 4:720–723PubMedPubMedCentralCrossRefGoogle Scholar
  13. Belhadj-tahar H, Sadeg N, Coulais Y (2017) Dendrimer compositions, methods of synthesis, and uses thereof. United States Patent 9603953Google Scholar
  14. Berthet N, Thomas B, Bossu I, Dufour E, Gillo E, Garcia J, Spinelli N, Imberty A, Dumy P, Renaudet O (2013) High affinity glycodendrimers for the lectin LecB from Pseudomonas aeruginosa. Bioconjug Chem 24:1598–1611PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bhadra D, Bhadra S, Jain NK (2004) PEGylated-poly-L-lysine dendrimers for delivery of chloroquine phosphate. In: 2004 International conference on MEMS, NANO and smart systems (ICMENS’04), 25–27 Aug 2004, pp 353–354.
  16. Blanco E, Guerra B, de la Torre BG, Defaus S, Dekker A, Andreu D, Sobrino F (2016) Full protection of swine against foot-and-mouth disease by a bivalent B-cell epitope dendrimer peptide. Antiviral Res 129:74–80PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bourne N, Stanberry LR, Kern ER, Holan G, Matthews B, Bernstein DI (2000) Dendrimers, a new class of candidate topical microbicides with activity against herpes simplex virus infection. Antimicrob Agents Chemother 44:2471–2474PubMedPubMedCentralCrossRefGoogle Scholar
  18. Boyd BJ, Kaminskas LM, Karellas P, Krippner G, Lessene R, Porter CJ (2006) Cationic poly-L-lysine dendrimers: pharmacokinetics, biodistribution, and evidence for metabolism and bioresorption after intravenous administration to rats. Mol Pharm 3:614–627PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bruchmann B, Klok H, Scholl MT (2013) Production and use of highly functional, highly branched or hyperbranched polylysines. United States Patent 8378049Google Scholar
  20. Cai H, Li K, Li J, Wen S, Chen Q, Shen M, Zheng L, Zhang G, Shi X (2015) Dendrimer-assisted formation of Fe3O4/Au nanocomposite particles for targeted dual mode CT/MR imaging of tumors. Small 11:4584–4593PubMedCrossRefPubMedCentralGoogle Scholar
  21. Carballo-Dieguez A, Giguere R, Dolezal C, Chen BA, Kahn J, Zimet G, Mabragana M, Leu CS, McGowan I (2012) “Tell Juliana”: acceptability of the candidate microbicide VivaGel(R) and two placebo gels among ethnically diverse, sexually active young women participating in a phase 1 microbicide study. AIDS Behav 16:1761–1774PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chang KL, Higuchi Y, Kawakami S, Yamashita F, Hashida M (2011) Development of lysine-histidine dendron modified chitosan for improving transfection efficiency in HEK293 cells. J Control Release 156:195–202PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chapman TJ (2002) Biocompatible emulsifier. United States Patent 6369118Google Scholar
  24. Chen MY, Millwood IY, Wand H, Poynten M, Law M, Kaldor JM, Wesselingh S, Price CF, Clark LJ, Paull JR, Fairley CK (2009) A randomized controlled trial of the safety of candidate microbicide SPL7013 gel when applied to the penis. J Acquir Immune Defic Syndr 50:375–380PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cohen CR, Brown J, Moscicki AB, Bukusi EA, Paull JR, Price CF, Shiboski S (2011) A phase I randomized placebo controlled trial of the safety of 3% SPL7013 Gel (VivaGel(R)) in healthy young women administered twice daily for 14 days. PLoS ONE 6:e16258PubMedPubMedCentralCrossRefGoogle Scholar
  26. Commeyras A, Collet H, Souaid E, Cottet H, Romestand B, Trambouze OYM (2008) Method of preparing grafted polylysine dendrimers. United States Patent 20080206183Google Scholar
  27. Coussot G, Ladner Y, Bayart C, Faye C, Vigier V, Perrin C (2015) On-line capillary electrophoresis-based enzymatic methodology for the study of polymer-drug conjugates. J Chromatogr A 1376:159–166PubMedCrossRefPubMedCentralGoogle Scholar
  28. Denkewalter RG, Kolc J, Lukasavage WJ (1981) Macromolecular highly branched homogeneous compound based on lysine units. United States Patent 4289872Google Scholar
  29. Denkewalter RG, Kolc J, Lukasavage WJ (1982) Preparation of lysine based macromolecular highly branched homogeneous compound. United States Patent 4360646Google Scholar
  30. Denkewalter RG, Kolc J, Lukasavage WJ (1983) Macromolecular highly branched homogeneous compound. United States Patent 4410688Google Scholar
  31. Duran-Lara EF, Marple JL, Giesen JA, Fang Y, Jordan JH, Godbey WT, Marican A, Santos LS, Grayson SM (2015) Investigation of lysine-functionalized dendrimers as dichlorvos detoxification agents. Biomacromolecular 16:3434–3444CrossRefGoogle Scholar
  32. England RM, Hare JI, Barnes J, Wilson J, Smith A, Strittmatter N, Kemmitt PD, Waring MJ, Barry ST, Alexander C, Ashford MB (2017) Tumour regression and improved gastrointestinal tolerability from controlled release of SN-38 from novel polyoxazoline-modified dendrimers. J Control Release 247:73–85PubMedCrossRefGoogle Scholar
  33. Fike R, Branchaud B, Barrett S (2013) Compositions and methods for stabilizing susceptible compounds. United States Patent 20130316004Google Scholar
  34. Florence AT, Sakthivel T, Wilderspin AF, Toth I (1998) Dendritic lysine-based polypeptides for targeted drug delivery. EP0884327Google Scholar
  35. Fox ME, Guillaudeu S, Frechet JM, Jerger K, Macaraeg N, Szoka FC (2009) Synthesis and in vivo antitumor efficacy of PEGylated poly(L-lysine) dendrimer-camptothecin conjugates. Mol Pharm 6:1562–1572PubMedPubMedCentralCrossRefGoogle Scholar
  36. Galli C, Piemontese M, Meikle ST, Santin M, Macaluso GM, Passeri G (2014) Biomimetic coating with phosphoserine-tethered poly(epsilon-lysine) dendrons on titanium surfaces enhances Wnt and osteoblastic differentiation. Clin Oral Implants Res 25:e133–e139PubMedCrossRefGoogle Scholar
  37. Gillies ER, Frechet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43PubMedCrossRefGoogle Scholar
  38. Grogan OT, Mccarthy TD (2013) Delivery system. United States Patent 8568753Google Scholar
  39. Halappanavar S, Vogel U, Wallin H, Yauk CL (2018) Promise and peril in nanomedicine: the challenges and needs for integrated systems biology approaches to define health risk. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10:e1465CrossRefGoogle Scholar
  40. Han S, Kanamoto T, Nakashima H, Yoshida T (2012) Synthesis of a new amphiphilic glycodendrimer with antiviral functionality. Carbohydr Polym 90:1061–1068PubMedCrossRefGoogle Scholar
  41. Haque S, McLeod VM, Jones S, Fung S, Whittaker M, McIntosh M, Pouton C, Owen DJ, Porter CJH, Kaminskas LM (2017) Effect of increased surface hydrophobicity via drug conjugation on the clearance of inhaled PEGylated polylysine dendrimers. Eur J Pharm Biopharm 119:408–418PubMedCrossRefGoogle Scholar
  42. Harada A, Matsuki R, Ichimura S, Yuba E, Kono K (2013) Intracellular environment-responsive stabilization of polymer vesicles formed from head-tail type polycations composed of a polyamidoamine dendron and poly(L-lysine). Molecules 18:12168–12179PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hegde AR, Rewatkar PV, Manikkath J, Tupally K, Parekh HS, Mutalik S (2017) Peptide dendrimer-conjugates of ketoprofen: synthesis and ex vivo and in vivo evaluations of passive diffusion, sonophoresis and iontophoresis for skin delivery. Eur J Pharm Sci 102:237–249PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hu G, Chun X, Wang Y, He Q, Gao H (2015) Peptide mediated active targeting and intelligent particle size reduction-mediated enhanced penetrating of fabricated nanoparticles for triple-negative breast cancer treatment. Oncotarget 6:41258–41274PubMedPubMedCentralGoogle Scholar
  45. Huang H, Braman JC (2005) Compositions and methods using dendrimer-treated microassays. United States Patent 20050059068Google Scholar
  46. Huang R, Liu S, Shao K, Han L, Ke W, Liu Y, Li J, Huang S, Jiang C (2010) Evaluation and mechanism studies of PEGylated dendrigraft poly-L-lysines as novel gene delivery vectors. Nanotechnology 21:265101PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hubbell JA, Elbert DL, Herbert CB (2004) Multifunctional polymeric tissue coatings. United States Patent 6743521Google Scholar
  48. Hubbell JA, Textor M, Elbert DL, Finken S, Hofer R, Spencer ND, Ruiz-taylor L (2005) Multifunctional polymeric surface coatings in analytic and sensor devices. United States Patent 6884628Google Scholar
  49. Huttl C, Hettrich C, Riedel M, Henklein P, Rawel H, Bier FF (2015) Development of peptidyl lysine dendrons: 1,3-dipolar cycloaddition for peptide coupling and antibody recognition. Chem Biol Drug Des 85:565–573PubMedCrossRefPubMedCentralGoogle Scholar
  50. Igor N, Elena P (2017) Interaction of lysine dendrimer and semax peptides. Molecular dynamics simulation. Int J Biol Biomed 2:6–12Google Scholar
  51. Isaksson K, Akerberg D, Said K, Tingstedt B (2011) Cationic polypeptides in a concept of oppositely charged polypeptides as prevention of postsurgical intraabdominal adhesions. Int J Biomed Sci 4:200–206Google Scholar
  52. Issa R, Meikle ST, James S, Cooper IR (2015) Poly(epsilon-lysine) dendrons as modulators of quorum sensing in Pseudomonas aeruginosa. J Mater Sci Mater Med 26:176PubMedCrossRefPubMedCentralGoogle Scholar
  53. Jain K, Gupta U, Jain NK (2014) Dendronized nanoconjugates of lysine and folate for treatment of cancer. Eur J Pharm Biopharm 87:500–509PubMedCrossRefPubMedCentralGoogle Scholar
  54. Janiszewska J, Posadas I, Jativa P, Bugaj-Zarebska M, Urbanczyk-Lipkowska Z, Cena V (2016) Second generation amphiphilic poly-lysine dendrons inhibit glioblastoma cell proliferation without toxicity for neurons or astrocytes. PLoS ONE 11:e0165704PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kadam RU, Bergmann M, Garg D, Gabrieli G, Stocker A, Darbre T, Reymond JL (2013) Structure-based optimization of the terminal tripeptide in glycopeptide dendrimer inhibitors of Pseudomonas aeruginosa biofilms targeting LecA. Chemistry 19:17054–17063PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kadlecova Z, Baldi L, Hacker D, Wurm FM, Klok HA (2012) Comparative study on the in vitro cytotoxicity of linear, dendritic, and hyperbranched polylysine analogues. Biomacromolecules 13:3127–3137PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kadlecova Z, Rajendra Y, Matasci M, Baldi L, Hacker DL, Wurm FM, Klok HA (2013) DNA delivery with hyperbranched polylysine: a comparative study with linear and dendritic polylysine. J Control Release 169:276–288PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kaminskas LM, Boyd BJ, Karellas P, Henderson SA, Giannis MP, Krippner GY, Porter CJ (2007) Impact of surface derivatization of poly-L-lysine dendrimers with anionic arylsulfonate or succinate groups on intravenous pharmacokinetics and disposition. Mol Pharm 4:949–961PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kaminskas LM, Boyd BJ, Karellas P, Krippner GY, Lessene R, Kelly B, Porter CJ (2008) The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of PEGylated poly L-lysine dendrimers. Mol Pharm 5:449–463PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kaminskas LM, Kelly BD, McLeod VM, Boyd BJ, Krippner GY, Williams ED, Porter CJ (2009a) Pharmacokinetics and tumor disposition of PEGylated, methotrexate conjugated poly-l-lysine dendrimers. Mol Pharm 6:1190–1204PubMedCrossRefPubMedCentralGoogle Scholar
  61. Kaminskas LM, Kota J, McLeod VM, Kelly BD, Karellas P, Porter CJ (2009b) PEGylation of polylysine dendrimers improves absorption and lymphatic targeting following SC administration in rats. J Control Release 140:108–116PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kaminskas LM, Wu Z, Barlow N, Krippner GY, Boyd BJ, Porter CJ (2009c) Partly-PEGylated Poly-L-lysine dendrimers have reduced plasma stability and circulation times compared with fully PEGylated dendrimers. J Pharm Sci 98:3871–3875PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kaminskas LM, Kelly BD, McLeod VM, Sberna G, Owen DJ, Boyd BJ, Porter CJ (2011) Characterisation and tumour targeting of PEGylated polylysine dendrimers bearing doxorubicin via a pH labile linker. J Control Release 152:241–248PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kaminskas LM, McLeod VM, Kelly BD, Sberna G, Boyd BJ, Williamson M, Owen DJ, Porter CJ (2012) A comparison of changes to doxorubicin pharmacokinetics, antitumor activity, and toxicity mediated by PEGylated dendrimer and PEGylated liposome drug delivery systems. Nanomedicine 8:103–111PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kaminskas LM, McLeod VM, Ryan GM, Kelly BD, Haynes JM, Williamson M, Thienthong N, Owen DJ, Porter CJ (2014) Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release 183:18–26PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kaneshiro TL, Wang X, Lu ZR (2007) Synthesis, characterization, and gene delivery of poly-L-lysine octa(3-aminopropyl)silsesquioxane dendrimers: nanoglobular drug carriers with precisely defined molecular architectures. Mol Pharm 4:759–768PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kaneshiro TL, Jeong EK, Morrell G, Parker DL, Lu ZR (2008) Synthesis and evaluation of globular Gd-DOTA-monoamide conjugates with precisely controlled nanosizes for magnetic resonance angiography. Biomacromol 9:2742–2748CrossRefGoogle Scholar
  68. Katsumi H, Nishikawa M, Hirosaki R, Okuda T, Kawakami S, Yamashita F, Hashida M, Sakane T, Yamamoto A (2016) Development of PEGylated cysteine-modified lysine dendrimers with multiple reduced thiols to prevent hepatic ischemia/reperfusion injury. Mol Pharm 13:2867–2873PubMedCrossRefPubMedCentralGoogle Scholar
  69. Kester M, Stover T, Lowe T, Adair JH, Kim YS (2015) Method and system for systemic delivery of growth arresting, lipid-derived bioactive compounds. United States Patent 9028863Google Scholar
  70. Klok H, Rodriguez-hernandez J, Müllen K (2003) Method for the preparation of highly branched polypeptides. WO2003064452Google Scholar
  71. Kolomiets E, Swiderska MA, Kadam RU, Johansson EM, Jaeger KE, Darbre T, Reymond JL (2009) Glycopeptide dendrimers with high affinity for the fucose-binding lectin LecB from Pseudomonas aeruginosa. ChemMedChem 4:562–569PubMedCrossRefPubMedCentralGoogle Scholar
  72. Konieczynska M, Villa-Camacho JC, Ghobril C, Perez-Viloria M, Tevis KM, Blessing WA, Nazarian A, Rodriguez EK, Grinstaff MW (2016) On-demand dissolution of a dendritic hydrogel-based dressing for second-degree burn wounds through thiol-thioester exchange reaction. Angew Chem Int Ed Engl 55:9984–9987PubMedPubMedCentralCrossRefGoogle Scholar
  73. Krippner GY, Williams CC, Kelly BD, Henderson SA, Wu Z, Razzino P (2013) Targeted polylysine dendrimer therapeutic agent. United States Patent 8420067Google Scholar
  74. Krippner GY, Wu Z, Peter K, Hagemeyer C, Owen D (2015) Polylysine dendrimer contrast agent. United States Patent 9127130Google Scholar
  75. Kurihara R, Pissuwan D, Mori T, Katayama Y, Niidome T (2012) Biodistribution and tumor localization of PEG-modified dendritic poly(L-lysine) oligonucleotide complexes. J Biomater Sci Polym Ed 23:2369–2380PubMedPubMedCentralGoogle Scholar
  76. Lelle M, Freidel C, Kaloyanova S, Tabujew I, Schramm A, Musheev M, Niehrs C, Mullen K, Peneva K (2017) Overcoming drug resistance by cell-penetrating peptide-mediated delivery of a doxorubicin dimer with high DNA-binding affinity. Eur J Med Chem 130:336–345PubMedCrossRefPubMedCentralGoogle Scholar
  77. Li C, Tansey W, Charnsangavej C, Wallace S (2007) Dendritic poly (amino acid) carriers and methods of use. United States Patent 7261875Google Scholar
  78. Lind TK, Darre L, Domene C, Urbanczyk-Lipkowska Z, Cardenas M, Wacklin HP (2015) Antimicrobial peptide dendrimer interacts with phosphocholine membranes in a fluidity dependent manner: a neutron reflection study combined with molecular dynamics simulations. Biochim Biophys Acta 1848:2075–2084PubMedCrossRefPubMedCentralGoogle Scholar
  79. Lowe TL, Kim YS, Huang X (2014) Multi-functional polymeric materials and their uses. United States Patent 8916616Google Scholar
  80. Lu Z, Kaneshiro T (2008) Dendimers and methods of making and using thereof. WO2008121153Google Scholar
  81. Luo K, Liu G, Zhang X, She W, He B, Nie Y, Li L, Wu Y, Zhang Z, Gong Q, Gao F, Song B, Ai H, Gu Z (2009) Functional L-lysine dendritic macromolecules as liver-imaging probes. Macromol Biosci 9:1227–1236PubMedCrossRefPubMedCentralGoogle Scholar
  82. Luo K, Li C, Wang G, Nie Y, He B, Wu Y, Gu Z (2011) Peptide dendrimers as efficient and biocompatible gene delivery vectors: synthesis and in vitro characterization. J Control Release 155:77–87PubMedCrossRefPubMedCentralGoogle Scholar
  83. Ma D, Liu ZH, Zheng QQ, Zhou XY, Zhang Y, Shi YF, Lin JT, Xue W (2013a) Star-shaped polymer consisting of a porphyrin core and poly(L-lysine) dendron arms: synthesis, drug delivery, and in vitro chemo/photodynamic therapy. Macromol Rapid Commun 34:548–552PubMedCrossRefPubMedCentralGoogle Scholar
  84. Ma D, Zhang HB, Chen YY, Lin JT, Zhang LM (2013b) New cyclodextrin derivative containing poly(L-lysine) dendrons for gene and drug co-delivery. J Colloid Interface Sci 405:305–311PubMedCrossRefPubMedCentralGoogle Scholar
  85. Maggio ND, Martella E, Meikle S, Columbaro M, Lucarelli E, Santin M, Banfi A (2016) Rapid and efficient magnetization of mesenchymal stem cells by dendrimer-functionalized magnetic nanoparticles. Nanomedicine 11:1519–1534PubMedCrossRefPubMedCentralGoogle Scholar
  86. Masuda M, Kawakami S, Wijagkanalan W, Suga T, Fuchigami Y, Yamashita F, Hashida M (2016) Anti-MUC1 aptamer/negatively charged amino acid dendrimer conjugates for targeted delivery to human lung adenocarcinoma A549 cells. Biol Pharm Bull 39:1734–1738PubMedCrossRefGoogle Scholar
  87. Matthews BR, Holan G (2001) Antiviral dendrimers. United States Patent 6190650Google Scholar
  88. Matthews BR, Holan G (2002) Angiogenic inhibitory compounds. United States Patent 6426067Google Scholar
  89. Matthews BR, Holan G, Karellas P, Henderson SA, O’keefe DF (2009) Agent for the prevention and treatment of sexually transmitted diseases-I. United States Patent 7589056Google Scholar
  90. Mcanulty JF, Murphy C, Abbott N (2014) Methods and compositions for wound healing. United States Patent 8709393Google Scholar
  91. McCarthy T, Karellas P, Henderson SA, Giannis M, O’Keefe DF, Heery G, Paull JR, Matthews BR, Holan G (2005) Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol Pharm 2:312–318PubMedCrossRefPubMedCentralGoogle Scholar
  92. McGowan I, Gomez K, Bruder K, Febo I, Chen BA, Richardson BA, Husnik M, Livant E, Price C, Jacobson C (2011) Phase 1 randomized trial of the vaginal safety and acceptability of SPL7013 gel (VivaGel) in sexually active young women (MTN-004). AIDS 25:1057–1064PubMedPubMedCentralCrossRefGoogle Scholar
  93. Meikle ST, Pineiro Y, Banobre Lopez M, Rivas J, Santin M (2016) Surface functionalization superparamagnetic nanoparticles conjugated with thermoresponsive poly(epsilon-lysine) dendrons tethered with carboxybetaine for the mild hyperthermia-controlled delivery of VEGF. Acta Biomater 40:235–242PubMedCrossRefPubMedCentralGoogle Scholar
  94. Min Y, Caster JM, Eblan MJ, Wang AZ (2015) Clinical translation of nanomedicine. Chem Rev 115:11147–11190PubMedPubMedCentralCrossRefGoogle Scholar
  95. Moscicki AB, Kaul R, Ma Y, Scott ME, Daud II, Bukusi EA, Shiboski S, Rebbapragada A, Huibner S, Cohen CR (2012) Measurement of mucosal biomarkers in a phase 1 trial of intravaginal 3% StarPharma LTD 7013 gel (VivaGel) to assess expanded safety. J Acquir Immune Defic Syndr 59:134–140PubMedPubMedCentralCrossRefGoogle Scholar
  96. Myung JH, Hsu HJ, Bugno J, Tam KA, Hong S (2017) Chemical structure and surface modification of dendritic nanomaterials tailored for therapeutic and diagnostic applications. Curr Top Med Chem 17:1542–1554PubMedCrossRefPubMedCentralGoogle Scholar
  97. Nam HY, Nam K, Hahn HJ, Kim BH, Lim HJ, Kim HJ, Choi JS, Park JS (2009) Biodegradable PAMAM ester for enhanced transfection efficiency with low cytotoxicity. Biomaterials 30:665–673PubMedCrossRefPubMedCentralGoogle Scholar
  98. Nandy B, Saurabh S, Sahoo AK, Dixit NM, Maiti PK (2015) The SPL7013 dendrimer destabilizes the HIV-1 gp120-CD4 complex. Nanoscale 7:18628–18641PubMedCrossRefPubMedCentralGoogle Scholar
  99. Neelov I, Falkovich S, Markelov D, Paci E, Darinskii A, Tenhu H (2013a) Molecular dynamics of lysine dendrimers. Computer simulation and NMR. In: Dendrimers in biomedical applications. The Royal Society of Chemistry, pp 99–114.
  100. Neelov IM, Janaszewska A, Klajnert B, Bryszewska M, Makova NZ, Hicks D, Pearson HA, Vlasov GP, Ilyash MY, Vasilev DS, Dubrovskaya NM, Tumanova NL, Zhuravin IA, Turner AJ, Nalivaeva NN (2013b) Molecular properties of lysine dendrimers and their interactions with Abeta-peptides and neuronal cells. Curr Med Chem 20:134–143PubMedCrossRefPubMedCentralGoogle Scholar
  101. Niidome T, Gokuden R, Watanabe K, Mori T, Naganuma T, Utsumi H, Ichikawa K, Katayama Y (2014) Nitroxyl radicals-modified dendritic poly(L-lysine) as a contrast agent for Overhauser-enhanced MRI. J Biomater Sci Polym Ed 25:1425–1439PubMedCrossRefPubMedCentralGoogle Scholar
  102. Nikalje AP (2015) Nanotechnology and its applications in medicine. Med Chem 5:81–89CrossRefGoogle Scholar
  103. O’Loughlin J, Millwood IY, McDonald HM, Price CF, Kaldor JM, Paull JR (2010) Safety, tolerability, and pharmacokinetics of SPL7013 gel (VivaGel): a dose ranging, phase I study. Sex Transm Dis 37:100–104PubMedCrossRefPubMedCentralGoogle Scholar
  104. Ogawa M, Regino CA, Marcelino B, Williams M, Kosaka N, Bryant LH Jr, Choyke PL, Kobayashi H (2010) New nanosized biocompatible MR contrast agents based on lysine-dendri-graft macromolecules. Bioconjug Chem 21:955–960PubMedPubMedCentralCrossRefGoogle Scholar
  105. Okuda T, Kawakami S, Akimoto N, Niidome T, Yamashita F, Hashida M (2006a) PEGylated lysine dendrimers for tumor-selective targeting after intravenous injection in tumor-bearing mice. J Control Release 116:330–336PubMedCrossRefPubMedCentralGoogle Scholar
  106. Okuda T, Kawakami S, Maeie T, Niidome T, Yamashita F, Hashida M (2006b) Biodistribution characteristics of amino acid dendrimers and their PEGylated derivatives after intravenous administration. J Control Release 114:69–77PubMedCrossRefPubMedCentralGoogle Scholar
  107. Papadopoulos A, Shiao TC, Roy R (2012) Diazo transfer and click chemistry in the solid phase syntheses of lysine-based glycodendrimers as antagonists against Escherichia coli FimH. Mol Pharm 9:394–403PubMedCrossRefPubMedCentralGoogle Scholar
  108. Patil ML, Zhang M, Minko T (2011) Multifunctional triblock nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing. ACS Nano 5:1877–1887PubMedPubMedCentralCrossRefGoogle Scholar
  109. Patton DL, Cosgrove Sweeney YT, McCarthy TD, Hillier SL (2006) Preclinical safety and efficacy assessments of dendrimer-based (SPL7013) microbicide gel formulations in a nonhuman primate model. Antimicrob Agents Chemother 50:1696–1700PubMedPubMedCentralCrossRefGoogle Scholar
  110. Pellett MR, Dezzutti CS, Rabe L, Hillier SL, Marrazzo J, McGowan I, Richardson BA, Herold BC (2015) Soluble immune mediators and vaginal bacteria impact innate genital mucosal antimicrobial activity in young women. Am J Reprod Immunol 74:323–332CrossRefGoogle Scholar
  111. Perugini V, Guildford AL, Silva-Correia J, Oliveira JM, Meikle ST, Reis RL, Santin M (2018) Anti-angiogenic potential of VEGF blocker dendron loaded on to gellan gum hydrogels for tissue engineering applications. J Tissue Eng Regen Med 12:e669–e678PubMedCrossRefPubMedCentralGoogle Scholar
  112. Pillai G (2014) Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci 1:13Google Scholar
  113. Price CF, Tyssen D, Sonza S, Davie A, Evans S, Lewis GR, Xia S, Spelman T, Hodsman P, Moench TR, Humberstone A, Paull JR, Tachedjian G (2011) SPL7013 Gel (VivaGel(R)) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans. PLoS ONE 6:e24095PubMedPubMedCentralCrossRefGoogle Scholar
  114. Rahimi A, Amjad-Iranagh S, Modarress H (2016) Molecular dynamics simulation of coarse-grained poly(L-lysine) dendrimers. J Mol Model 22:59PubMedCrossRefPubMedCentralGoogle Scholar
  115. Ramaswamy C, Sakthivel T, Wilderspin AF, Florence AT (2003) Dendriplexes and their characterisation. Int J Pharm 254:17–21PubMedCrossRefPubMedCentralGoogle Scholar
  116. Raucci MG, Alvarez-Perez MA, Meikle S, Ambrosio L, Santin M (2014) Poly(Epsilon-lysine) dendrons tethered with phosphoserine increase mesenchymal stem cell differentiation potential of calcium phosphate gels. Tissue Eng Part A 20:474–485PubMedPubMedCentralGoogle Scholar
  117. Rosli N, Christie MP, Moyle PM, Toth I (2015) Peptide based DNA nanocarriers incorporating a cell-penetrating peptide derived from neurturin protein and poly-L-lysine dendrons. Bioorg Med Chem 23:2470–2479PubMedCrossRefPubMedCentralGoogle Scholar
  118. Rupp R, Rosenthal SL, Stanberry LR (2007) VivaGel (SPL7013 Gel): a candidate dendrimer-microbicide for the prevention of HIV and HSV infection. Int J Nanomedicine 2:561–566PubMedPubMedCentralGoogle Scholar
  119. Ryan GM, Kaminskas LM, Bulitta JB, McIntosh MP, Owen DJ, Porter CJH (2013a) PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin. J Control Release 172:128–136PubMedCrossRefPubMedCentralGoogle Scholar
  120. Ryan GM, Kaminskas LM, Kelly BD, Owen DJ, McIntosh MP, Porter CJ (2013b) Pulmonary administration of PEGylated polylysine dendrimers: absorption from the lung versus retention within the lung is highly size-dependent. Mol Pharm 10:2986–2995PubMedCrossRefPubMedCentralGoogle Scholar
  121. Sakharov DV, Jie AF, Bekkers ME, Emeis JJ, Rijken DC (2001) Polylysine as a vehicle for extracellular matrix-targeted local drug delivery, providing high accumulation and long-term retention within the vascular wall. Arterioscler Thromb Vasc Biol 21:943–948PubMedCrossRefPubMedCentralGoogle Scholar
  122. Sakharov DV, Jie AF, Filippov DV, Bekkers ME, van Boom JH, Rijken DC (2003) Binding and retention of polycationic peptides and dendrimers in the vascular wall. FEBS Lett 537:6–10PubMedCrossRefPubMedCentralGoogle Scholar
  123. Santi D, Myles DC, Metcalf B, Hutchinson RC, Ashley G (2003) Maytansines and maytansine conjugates. United States Patent 20030109682Google Scholar
  124. Sarbolouki MN, Sadeghizadeh M, Yaghoobi MM, Karami A, Lohrasbi T (2000) Dendrosomes: a novel family of vehicles for transfection and therapy. J Chem Technol Biotechnol 75:919–922CrossRefGoogle Scholar
  125. Seo JW, Baek H, Mahakian LM, Kusunose J, Hamzah J, Ruoslahti E, Ferrara KW (2014) (64)Cu-labeled LyP-1-dendrimer for PET-CT imaging of atherosclerotic plaque. Bioconjug Chem 25:231–239PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sharma AK, Gothwal A, Kesharwani P, Alsaab H, Iyer AK, Gupta U (2017) Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov Today 22:314–326PubMedCrossRefPubMedCentralGoogle Scholar
  127. Shcharbin D, Janaszewska A, Klajnert-Maculewicz B, Ziemba B, Dzmitruk V, Halets I, Loznikova S, Shcharbina N, Milowska K, Ionov M, Shakhbazau A, Bryszewska M (2014) How to study dendrimers and dendriplexes III. Biodistribution, pharmacokinetics and toxicity in vivo. J Control Release 181:40–52PubMedCrossRefGoogle Scholar
  128. Shi X, Wang S, Baker JR Jr (2009) Dendrimer based compositions and methods of using the same. United States Patent 20090053139Google Scholar
  129. Shi C, He Y, Feng X, Fu D (2015) epsilon-Polylysine and next-generation dendrigraft poly-L-lysine: chemistry, activity, and applications in biopharmaceuticals. J Biomater Sci Polym Ed 26:1343–1356PubMedCrossRefPubMedCentralGoogle Scholar
  130. Sideratou Z, Sterioti N, Tsiourvas D, Tziveleka LA, Thanassoulas A, Nounesis G, Paleos CM (2010) Arginine end-functionalized poly(L-lysine) dendrigrafts for the stabilization and controlled release of insulin. J Colloid Interface Sci 351:433–441PubMedCrossRefPubMedCentralGoogle Scholar
  131. Sisavath N, Leclercq L, Le Saux T, Oukacine F, Cottet H (2013) Study of interactions between oppositely charged dendrigraft poly-L-lysine and human serum albumin by continuous frontal analysis capillary electrophoresis and fluorescence spectroscopy. J Chromatogr A 1289:127–132PubMedCrossRefPubMedCentralGoogle Scholar
  132. Sommer P, Fluxa VS, Darbre T, Reymond JL (2009) Proteolysis of peptide dendrimers. Chembiochem 10:1527–1536PubMedCrossRefPubMedCentralGoogle Scholar
  133. [VivaGel®]. Starpharma Holdings Limited. Accessed 26 sept 2017Google Scholar
  134. Sugao Y, Watanabe K, Higuchi Y, Kurihara R, Kawakami S, Hashida M, Katayama Y, Niidome T (2009) NFkappaB decoy delivery using dendritic poly(L-lysine) for treatment of endotoxin-induced hepatitis in mice. Bioorg Med Chem 17:4990–4995PubMedCrossRefPubMedCentralGoogle Scholar
  135. Svenson S (2015) The dendrimer paradox-high medical expectations but poor clinical translation. Chem Soc Rev 44:4131–4144PubMedCrossRefPubMedCentralGoogle Scholar
  136. Szoka FCHJ Jr (2004) Self-assembling polynucleotide delivery system comprising dendrimer polycations EP0708637Google Scholar
  137. Taite LJ, West JL (2006) Poly(ethylene glycol)-lysine dendrimers for targeted delivery of nitric oxide. J Biomater Sci Polym Ed 17:1159–1172CrossRefGoogle Scholar
  138. Telwatte S, Moore K, Johnson A, Tyssen D, Sterjovski J, Aldunate M, Gorry PR, Ramsland PA, Lewis GR, Paull JR, Sonza S, Tachedjian G (2011) Virucidal activity of the dendrimer microbicide SPL7013 against HIV-1. Antiviral Res 90:195–199PubMedPubMedCentralCrossRefGoogle Scholar
  139. Tomalia DA, Pulgam VR, Swanson DR, Huang B (2011a) Janus dendrimers and dendrons. United States Patent 7977452Google Scholar
  140. Tomalia DA, Swanson DR, Huang B, Pulgam VR (2011b) Dendritic polymers with enhanced amplification and interior functionality. United States Patent 7981444Google Scholar
  141. Tyssen D, Henderson SA, Johnson A, Sterjovski J, Moore K, La J, Zanin M, Sonza S, Karellas P, Giannis MP, Krippner G, Wesselingh S, McCarthy T, Gorry PR, Ramsland PA, Cone R, Paull JR, Lewis GR, Tachedjian G (2010) Structure activity relationship of dendrimer microbicides with dual action antiviral activity. PLoS ONE 5:e12309PubMedPubMedCentralCrossRefGoogle Scholar
  142. Wang Q, Li J, An S, Chen Y, Jiang C, Wang X (2015) Magnetic resonance-guided regional gene delivery strategy using a tumor stroma-permeable nanocarrier for pancreatic cancer. Int J Nanomed 10:4479–4490CrossRefGoogle Scholar
  143. Wang F, Hu K, Cheng Y (2016) Structure-activity relationship of dendrimers engineered with twenty common amino acids in gene delivery. Acta Biomater 29:94–102PubMedCrossRefPubMedCentralGoogle Scholar
  144. Watanabe K, Harada-Shiba M, Suzuki A, Gokuden R, Kurihara R, Sugao Y, Mori T, Katayama Y, Niidome T (2009) In vivo siRNA delivery with dendritic poly(L-lysine) for the treatment of hypercholesterolemia. Mol Biosyst 5:1306–1310PubMedCrossRefPubMedCentralGoogle Scholar
  145. Zhang X, Luo K, Wang G, Nie Y, He B, Wu Y, Gu Z (2012) Synthesis and inhibition study on tripeptide inhibitor modified poly(L-lysine) dendrimers. J Biomater Appl 27:17–26PubMedCrossRefPubMedCentralGoogle Scholar
  146. Zhang C, Pan D, Li J, Hu J, Bains A, Guys N, Zhu H, Li X, Luo K, Gong Q, Gu Z (2017) Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater 55:153–162PubMedCrossRefPubMedCentralGoogle Scholar
  147. Zhao J, Zhou R, Fu X, Ren W, Ma L, Li R, Zhao Y, Guo L (2014) Cell-penetrable lysine dendrimers for anti-cancer drug delivery: synthesis and preliminary biological evaluation. Arch Pharm (Weinheim) 347:469–477CrossRefGoogle Scholar
  148. Zhong D, Tu Z, Zhang X, Li Y, Xu X, Gu Z (2017) Bioreducible peptide-dendrimeric nanogels with abundant expanded voids for efficient drug entrapment and delivery. Biomacromol 18:3498–3505CrossRefGoogle Scholar
  149. Zhou Z, Ma X, Murphy CJ, Jin E, Sun Q, Shen Y, Van Kirk EA, Murdoch WJ (2014) Molecularly precise dendrimer-drug conjugates with tunable drug release for cancer therapy. Angew Chem Int Ed Engl 53:10949–10955PubMedCrossRefPubMedCentralGoogle Scholar
  150. Zhou X, Zheng Q, Wang C, Xu J, Wu JP, Kirk TB, Ma D, Xue W (2016) Star-shaped amphiphilic hyperbranched polyglycerol conjugated with dendritic poly(L-lysine) for the codelivery of docetaxel and MMP-9 siRNA in cancer therapy. ACS Appl Mater Interfaces 8:12609–12619PubMedCrossRefPubMedCentralGoogle Scholar
  151. Zhu Y, Sheng R, Luo T, Li H, Sun W, Li Y, Cao A (2011) Amphiphilic cationic [dendritic poly(L-lysine)]-block-poly(L-lactide)-block-[dendritic poly(L-lysine)]s in aqueous solution: self-aggregation and interaction with DNA as gene delivery carriers. Macromol Biosci 11:174–186PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Shobhaben Pratapbhai Patel School of Pharmacy & Technology ManagementSVKM’s NMIMSMumbaiIndia
  2. 2.Humera Khan College of PharmacyMumbaiIndia

Personalised recommendations