Advertisement

Xenobiotic Binding Domain of Glutathione S-Transferase Has Cryptic Antimicrobial Peptides

  • Soyar Horam
  • Sneha Raj
  • Vikash Chandra Tripathi
  • Garima Pant
  • Mitra Kalyan
  • Thota Jagadeshwar Reddy
  • Jesu Arockiaraj
  • Mukesh PasupuletiEmail author
Article
  • 33 Downloads

Abstract

Antimicrobial peptides are one of the important components of innate immune defense system and play a critical role in controlling infections. Although vast sequence and structural diversities exist, AMPs share several common features like cationicity, amphipathicity and membrane permeabilisation as mode of action. In this study, a moderately short cationic and hydrophobic peptides derived from the conserved domains of human glutathione S-transferase (GST) have been shown to have antimicrobial activity against Staphylococcus aureus ATCC 29213 and Klebsiella pneumoniae ATCC 7637 in physiological conditions without any toxicity issues. We further shown here that human GST, a C-terminal region which showed the higher antimicrobial activity, is conserved in the vertebrates. Our results demonstrate the potential of human GST derived peptides as a template for the development of anti-infective therapeutics.

Keywords

ESKAPE Glutathione S-transferase Antimicrobial peptides Host defence peptides S. aureus K. pneumonia 

Notes

Acknowledgements

MP is grateful to the Director, CDRI, Lucknow, India for providing the seed grant to establish the group and constant encouragement during the study. MP is thankful to DST-SERB, New Delhi [grant no.: SB/YS/LS-321/2013] for financial assistance. SH and VCT are grateful to UGC, India for the financial support. SR is thankful to ICMR, New Delhi, India for senior research fellowship. We are very thankful to RK Purshottam, SAIF, CSIR-CDRI for recording the flow cytometry profiles. We great fully acknowledge Mr A.Lal for technical support. CSIR-CDRI communication number: 9779.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10989_2018_9793_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1911 KB)
10989_2018_9793_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 15 KB)

References

  1. Andersson E, Rydengard V, Sonesson A, Morgelin M, Bjorck L, Schmidtchen A (2004) Antimicrobial activities of heparin-binding peptides. Eur J Biochem 271(6):1219–1226PubMedGoogle Scholar
  2. Andrushchenko VV, Vogel HJ, Prenner EJ (2007) Optimization of the hydrochloric acid concentration used for trifluoroacetate removal from synthetic peptides. ‎J Pept Sci 13(1):37–43PubMedGoogle Scholar
  3. Arockiaraj J, Chaurasia MK, Kumaresan V, Palanisamy R, Harikrishnan R, Pasupuleti M, Kasi M (2015) Macrobrachium rosenbergii mannose binding lectin: synthesis of MrMBL-N20 and MrMBL-C16 peptides and their antimicrobial characterization, bioinformatics and relative gene expression analysis. Fish Shellfish Immunol 43(2):364–374PubMedGoogle Scholar
  4. Aslam RM, Caline C, Christian J, Franaois D, Franaois VD, Alain P, Gilles H, Youssef T, Corinne S, Marie MF H (2013) Cateslytin, a chromogranin a derived peptide is active against staphylococcus aureus and resistant to degradation by its proteases. PLoS ONE 8(7):e68993PubMedPubMedCentralGoogle Scholar
  5. Atkinson HJ, Babbitt PC (2009) Glutathione transferases are structural and functional outliers in the thioredoxin fold. Biochemistry 48(46):11108–11116PubMedPubMedCentralGoogle Scholar
  6. Berthold N, Czihal P, Fritsche S, Sauer U, Schiffer G, Knappe D, Alber G, Hoffmann R (2013) Novel apidaecin 1b analogs with superior serum stabilities for treatment of infections by gram-negative pathogens. Antimicrob Agents Chemother 57(1):402–409PubMedPubMedCentralGoogle Scholar
  7. Beter M, Kara HK, Topal AE, Dana A, Tekinay AB, Guler MO (2017) Multivalent presentation of cationic peptides on supramolecular nanofibers for antimicrobial activity. Mol Pharmacol 14(11):3660–3668Google Scholar
  8. Board PG, Menon D (2013) Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta 1830(5):3267–3288PubMedGoogle Scholar
  9. Boucher HW, Talbot GH, Benjamin DK Jr, Bradley J, Guidos RJ, Jones RN, Murray BE, Bonomo RA, Gilbert D, Infectious Diseases Society of A (2013) 10 x ‘20 progress-development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis 56(12):1685–1694PubMedPubMedCentralGoogle Scholar
  10. Cummins I, Dixon DP, Freitag-Pohl S, Skipsey M, Edwards R (2011) Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab Rev 43(2):266–280PubMedGoogle Scholar
  11. Dobson CB, Sales SD, Hoggard P, Wozniak MA, Crutcher KA (2006) The receptor-binding region of human apolipoprotein E has direct anti-infective activity. J Infect Dis 193(3):442–450PubMedGoogle Scholar
  12. Gao W, Xing L, Qu P, Tan T, Yang N, Li D, Chen H, Feng X (2015) Identification of a novel cathelicidin antimicrobial peptide from ducks and determination of its functional activity and antibacterial mechanism. Sci Rep 5:17260PubMedPubMedCentralGoogle Scholar
  13. Hansen PR, Oddo A (2015) Fmoc solid-phase peptide synthesis. Methods Mol Biol 1348:33–50PubMedGoogle Scholar
  14. Hauge HH, Mantzilas D, Moll GN, Konings WN, Driessen AJM, Eijsink VGH, Nissen-Meyer J (1998) Plantaricin A is an amphiphilic alpha-helical bacteriocin-like pheromone which exerts antimicrobial and pheromone activities through different mechanisms. Biochemistry 37(46):16026–16032PubMedGoogle Scholar
  15. Hilpert K, Fjell CD, Cherkasov A (2008) Short linear cationic antimicrobial peptides: screening, optimizing, and prediction. Peptide-based drug design. L. Otvos. Humana Press, Totowa, pp 127–159Google Scholar
  16. Jaskiewicz M, Neubauer D, Kamysz W (2017) Comparative study on antistaphylococcal activity of lipopeptides in various culture media. Antibiotics (Basel) 6(3):15Google Scholar
  17. Jindal HM, Le CF, Yusof MYM, Velayuthan RD, Lee VS, Zain SM, Isa DM, Sekaran SD (2015) Antimicrobial activity of novel synthetic peptides derived from indolicidin and ranalexin against Streptococcus pneumoniae. PLoS ONE 10(6):e0128532PubMedPubMedCentralGoogle Scholar
  18. Kacprzyk L, Rydengård V, Mörgelin M, Davoudi M, Pasupuleti M, Malmsten M, Schmidtchen A (2007) Antimicrobial activity of histidine-rich peptides is dependent on acidic conditions. Biochim Biophys Acta-Biomembr 1768(11):2667–2680Google Scholar
  19. Kasetty G, Kalle M, Morgelin M, Brune JC, Schmidtchen A (2015) Anti-endotoxic and antibacterial effects of a dermal substitute coated with host defense peptides. Biomaterials 53:415–425PubMedGoogle Scholar
  20. Krause A, Sillard R, Kleemeier B, Kluver E, Maronde E, Conejo-García JR, Forssmann WG, Schulz-Knappe P, Nehls MC, Wattler F, Wattler S, Adermann K (2003) Isolation and biochemical characterization of LEAP-2, a novel blood peptide expressed in the liver. Protein Sci 12(1):143–152PubMedPubMedCentralGoogle Scholar
  21. Kumaresan V, Gnanam AJ, Pasupuleti M, Arasu MV, Al-Dhabi NA, Harikrishnan R, Arockiaraj J (2015) Comparative analysis of CsCu/ZnSOD defense role by molecular characterization: gene expression-enzyme activity-protein level. Gene 564(1):53–62PubMedGoogle Scholar
  22. Liu Y, Han F, Xie Y, Wang Y (2011) Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides. Biometals 24(6):1069–1078PubMedGoogle Scholar
  23. Lombana A, Raja Z, Casale S, Pradier CM, Foulon T, Ladram A, Humblot V (2014) Temporin-SHa peptides grafted on gold surfaces display antibacterial activity. J Pept Sci 20(7):563–569PubMedGoogle Scholar
  24. Magzoub M, Kilk K, Eriksson L, Langel U, Gräslund A (2001) Interaction and structure induction of cell-penetrating peptides in the presence of phospholipid vesicles. Biochim Biophys Acta-Biomembr 1512(1):77–89Google Scholar
  25. Mazzetti AP, Fiorile MC, Primavera A, Lo Bello M (2015) Glutathione transferases and neurodegenerative diseases. Neurochem Int 82:10–18PubMedGoogle Scholar
  26. McKinstry WJ, Oakley AJ, Rossjohn J, Verger D, Tan KL, Board PG, Parker MW (1998) Preliminary X-ray crystallographic studies of a newly defined human theta-class glutathione transferase. Acta Crystallogr D 54(Pt 1):148–150PubMedGoogle Scholar
  27. Minami SS, Cordova A, Cirrito JR, Tesoriero JA, Babus LW, Davis GC, Dakshanamurthy S, Turner RS, Pak D, Rebeck GW, Paige M, Hoe HS (2010) ApoE mimetic peptide decreases Abeta production in vitro and in vivo. Mol Neurodegener 5:16PubMedPubMedCentralGoogle Scholar
  28. Nordahl EA, Rydengard V, Nyberg P, Nitsche DP, Morgelin M, Malmsten M, Bjarck L, Schmidtchen A (2004) Activation of the complement system generates antibacterial peptides. Proc Natl Acad Sci USA 101(48):16879–16884PubMedGoogle Scholar
  29. Nordahl EA, Rydengard V, Morgelin M, Schmidtchen A (2005) Domain 5 of high molecular weight kininogen is antibacterial. J Biol Chem 280(41):34832–34839PubMedGoogle Scholar
  30. Ong ZY, Wiradharma N, Yang YY (2014) Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv Drug Deliv Rev 78:28–45PubMedGoogle Scholar
  31. Papareddy P, Rydengård V, Pasupuleti M, Walse B, Mörgelin M, Chalupka A, Malmsten M, Schmidtchen A (2010) Proteolysis of human thrombin generates novel host defense peptides. PLoS Pathog 6(4):e1000857PubMedPubMedCentralGoogle Scholar
  32. Pasupuleti M, Walse B, Nordahl EA, Morgelin M, Malmsten M, Schmidtchen A (2007) Preservation of antimicrobial properties of complement peptide C3a, from invertebrates to humans. J Biol Chem 282(4):2520–2528PubMedGoogle Scholar
  33. Pasupuleti M, Walse B, Svensson B, Malmsten M, Schmidtchen A (2008) Rational design of antimicrobial C3a analogues with enhanced effects against Staphylococci using an integrated structure and function-based approach. Biochemistry 47(35):9057–9070PubMedGoogle Scholar
  34. Pasupuleti M, Chalupka A, Mörgelin M, Schmidtchen A, Malmsten M (2009a) Tryptophan end-tagging of antimicrobial peptides for increased potency against Pseudomonas aeruginosa. Biochim Biophys Acta 1790(8):800–808PubMedGoogle Scholar
  35. Pasupuleti M, Davoudi M, Malmsten M, Schmidtchen A (2009b) Antimicrobial activity of a C-terminal peptide from human extracellular superoxide dismutase. BMC Res Notes 2:136PubMedPubMedCentralGoogle Scholar
  36. Pasupuleti M, Schmidtchen A, Chalupka A, Ringstad L, Malmsten M (2009c) End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing. PLoS ONE 4(4):e5285PubMedPubMedCentralGoogle Scholar
  37. Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 32(2):143–171PubMedGoogle Scholar
  38. Pavia KE, Spinella SA, Elmore DE (2012) Novel histone-derived antimicrobial peptides use different antimicrobial mechanisms. Biochim Biophys Acta 1818(3):869–876PubMedGoogle Scholar
  39. Ryu S, Song PI, Seo CH, Cheong H, Park Y (2014) Colonization and infection of the skin by S. aureus: immune system evasion and the response to cationic antimicrobial peptides. Int J Mol Sci 15(5):8753–8772PubMedPubMedCentralGoogle Scholar
  40. Sader HS, Mendes RE, Jones RN, Flamm RK (2016) Antimicrobial susceptibility patterns of community- and hospital-acquired methicillin-resistant Staphylococcus aureus from United States Hospitals: results from the AWARE Ceftaroline Surveillance Program (2012–2014). Diagn Microbiol Infect Dis 86(1):76–79PubMedGoogle Scholar
  41. Santamaría C, Angulo SL, Pizarro-Cerda Y, Gorvel J, Moreno JP, Lomonte E B (2005) Antimicrobial activity of myotoxic phospholipases A2 from crotalid snake venoms and synthetic peptide variants derived from their C-terminal region. Toxicon 45(7):807–815PubMedGoogle Scholar
  42. Schmidtchen A, Pasupuleti M, Morgelin M, Davoudi M, Alenfall J, Chalupka A, Malmsten M (2009) Boosting antimicrobial peptides by hydrophobic oligopeptide end tags. J Biol Chem 284(26):17584–17594PubMedPubMedCentralGoogle Scholar
  43. Scott MG, Dullaghan E, Mookherjee N, Glavas N, Waldbrook M, Thompson A, Wang A, Lee K, Doria S, Hamill P (2007) An anti-infective peptide that selectively modulates the innate immune response. Nat Biotechnol 25(4):465–472PubMedGoogle Scholar
  44. Setty SC, Horam S, Pasupuleti M, Haq W (2017) Modulating the antimicrobial activity of temporin l through introduction of fluorinated phenylalanine. Int J Pept Res Ther 23(2):213–225Google Scholar
  45. Sikora K, Neubauer D, Jaskiewicz M, Kamysz W (2017) Citropin 1.1 trifluoroacetate to chloride counter-ion exchange in HCl-saturated organic solutions: an alternative approach. Int J Pept Res Ther 24:265–270PubMedPubMedCentralGoogle Scholar
  46. Sikora K, Jaskiewicz M, Neubauer D, Bauer M, Bartoszewska S, Baranska-Rybak W, Kamysz W (2018) Counter-ion effect on antistaphylococcal activity and cytotoxicity of selected antimicrobial peptides. Amino Acids 50:609-619PubMedPubMedCentralGoogle Scholar
  47. Simpkin VL, Renwick MJ, Kelly R, Mossialos E (2017) Incentivising innovation in antibiotic drug discovery and development: progress, challenges and next steps. J Antibiot 70(12):1087–1096PubMedPubMedCentralGoogle Scholar
  48. Stromstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M (2009) Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob Agents Chemother 53(2):593–602PubMedGoogle Scholar
  49. Svensson SL, Pasupuleti M, Walse B, Malmsten M, Mörgelin M, Sjögren C, Olin AI, Collin M, Schmidtchen A, Palmer R (2010) Midkine and pleiotrophin have bactericidal properties: preserved antibacterial activity in a family of heparin-binding growth factors during evolution. J Biol Chem 285(21):16105–16115PubMedPubMedCentralGoogle Scholar
  50. Thaker HD, Sgolastra F, Clements D, Scott RW, Tew GN (2011) Synthetic mimics of antimicrobial peptides from triaryl scaffolds. J Med Chem 54(7):2241–2254PubMedPubMedCentralGoogle Scholar
  51. Thompson SA, Higashiyama S, Wood K, Pollitt NS, Damm D, McEnroe G, Garrick B, Ashton N, Lau K, Hancock N (1994) Characterization of sequences within heparin-binding EGF-like growth factor that mediate interaction with heparin. J Biol Chem 269(4):2541–2549PubMedGoogle Scholar
  52. Torrent M, Pulido D, Valle J, Nogués MV, Andreu D, Boix E (2013) Ribonucleases as a host-defence family: evidence of evolutionarily conserved antimicrobial activity at the N-terminus. Biochem J 456(1):99–108PubMedGoogle Scholar
  53. van der Plas MJ, Bhongir RK, Kjellstrom S, Siller H, Kasetty G, Morgelin M, Schmidtchen A (2016) Pseudomonas aeruginosa elastase cleaves a C-terminal peptide from human thrombin that inhibits host inflammatory responses. Nat Commun 7:11567PubMedPubMedCentralGoogle Scholar
  54. Waghu FH, Gopi L, Barai RS, Ramteke P, Nizami B, Idicula-Thomas S (2014) CAMP: collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res 42(D1):D1154–D1158PubMedGoogle Scholar
  55. Wang Y, Ding Y, Wen H, Lin Y, Hu Y, Zhang Y, Xia Q, Lin Z (2012) QSAR modeling and design of cationic antimicrobial peptides based on structural properties of amino acids. Comb Chem High Throughput Screen 15(4):347–353PubMedGoogle Scholar
  56. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44(D1):D1087–D1093PubMedGoogle Scholar
  57. Wu B, Dong D (2012) Human cytosolic glutathione transferases: structure, function, and drug discovery. Trends Pharmacol Sci 33(12):656–668PubMedGoogle Scholar
  58. Xu W, Zhu X, Tan T, Li W, Shan A (2014) Design of embedded-hybrid antimicrobial peptides with enhanced cell selectivity and anti-biofilm activity. PLoS ONE 9(6):e98935PubMedPubMedCentralGoogle Scholar
  59. Yamada K, Natori S (1994) Characterization of the antimicrobial peptide derived from sapecin B, an antibacterial protein of Sarcophaga peregrina (flesh fly). Biochem J 298(Pt 3):623–628PubMedPubMedCentralGoogle Scholar
  60. Yenugu S, Hamil KG, Grossman G, Petrusz P, French FS, Hall SH (2006) Identification, cloning and functional characterization of novel sperm associated antigen 11 (SPAG11) isoforms in the rat. Reprod Biol Endocrinol 4:23–23PubMedPubMedCentralGoogle Scholar
  61. Zecconi A, Scali F (2013) Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol Lett 150(1–2):12–22PubMedGoogle Scholar
  62. Zhao H, Lee W-H, Shen JH, Li H, Zhang Y (2008) Identification of novel semenogelin I-derived antimicrobial peptide from liquefied human seminal plasma. Peptides 29(4):505–511PubMedGoogle Scholar
  63. Zhu S, Gao B (2017) Positive selection in cathelicidin host defense peptides: adaptation to exogenous pathogens or endogenous receptors? Heredity 118(5):453–465PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Soyar Horam
    • 1
  • Sneha Raj
    • 1
  • Vikash Chandra Tripathi
    • 1
  • Garima Pant
    • 2
  • Mitra Kalyan
    • 2
  • Thota Jagadeshwar Reddy
    • 3
  • Jesu Arockiaraj
    • 4
  • Mukesh Pasupuleti
    • 1
    Email author return OK on get
  1. 1.Microbiology DivisionCSIR-Central Drug Research InstituteLucknowIndia
  2. 2.Electron Microscopy UnitCSIR-Central Drug Research InstituteLucknowIndia
  3. 3.Mass Spectrometry Laboratory, Sophisticated Analytical Instrument FacilityCSIR-Central Drug Research InstituteLucknowIndia
  4. 4.SRM Research InstituteSRM Institute of Science and TechnologyChennaiIndia

Personalised recommendations