Advertisement

Inhibition of Methicillin Resistant Staphylococcus aureus by Bacteriocin Producing Pseudomonas aeruginosa

  • Thangarasu Arumugam
  • Selvam Dhanam
  • Neelamegam Rameshkumar
  • Muthukalingan Krishnan
  • Nagarajan KayalvizhiEmail author
Article
  • 158 Downloads

Abstract

Bacteriocins are natural antimicrobial peptides with attractive possible applications in food preservation and health care. In the present study, bacteriocin producing bacterial strain Pseudomonas aeruginosa were isolated from soil which exhibited antagonistic activity against Methicillin Resistant Staphylococcus aureus (MRSA) bacteria. The bacteriocin producing strain TA6 was confirmed as P. aeruginosa by biochemical tests and 16S rRNA gene sequence analysis. Maximum bacteriocin activity (100 AU ml−1) was observed at 37 °C with pH 6.0 in 24 h time duration. SDS–PAGE analysis of the extracellular protein of P. aeruginosa TA6 revealed a bacteriocin-like protein with a molecular mass of ~10 kDa. MRSA cells were treated with culture supernatant of P. aeruginosa TA6 and analyzed by FT-IR. The treated and untreated MRSA showed band variations at 671 and 3460 cm−1 corresponding to alkyl and amide group respectively. Mixed proportions of dead and live control populations were analyzed by flow cytometry to determine detection limits of the Dead/Live cells. The flow cytometry detection of defined proportions of dead (p2) and live (p1) cells at 3 h were p2 = 60.5%; p1 = 39.5% and 6 h p2 = 66.5%; p1 = 33.5% respectively. The scanning electron microscopy observation showed the main changes in the cell membrane structural integrity of S. aureus after exposure to the bacteriocin from P. aeruginosa TA6 at 12 h incubation. Together, the results suggested that bacteriocin from P. aeruginosa TA6 was effective against MRSA.

Keywords

Bacteriocin Methicillin-resistant Staphylococcus aureus Pseudomonas aeruginosa TA6 SDS–PAGE SEM 

Notes

Acknowledgements

The authors gratefully acknowledge the Department of Science and Technology, New Delhi for providing financial supports under DST-WOS-A start of grant for (DST/SR/WOS- A/LS-629/2012(G)), Scheme.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Baggett HC, Hennessy TW, Leman R, Hamlin C, Bruden D, Reasonover A (2003) An outbreak of community-onset methicillin-resistant Staphylococcus aureus skin infections in southwestern Alaska. Infect Control Hosp Epidemiol 24:397–402CrossRefGoogle Scholar
  2. Bartoloni A, Bartalesi F, Mantella A, Dell’Amico E, Roselli M, Strohmeyer M (2004) High prevalence of acquired antimicrobial resistance unrelated to heavy antimicrobial consumption. J Infect Dis 189:1291–1294CrossRefGoogle Scholar
  3. Bhunia AK, Johnson MC, Ray B (1987) Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulphate-polyacrylamide gel electrophoresis. J Ind Microbiol 2:319–322CrossRefGoogle Scholar
  4. Brotz H, Josten M, Wiedemann I, Schneider U, Gotz F, Bierbaum G (1998) Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol 30:317–327CrossRefGoogle Scholar
  5. Church D, Elsayed S, Reid O, Winston B, Lindsay R (2006) Burn wound infections. Clin Microbiol Rev 19:403–434CrossRefGoogle Scholar
  6. Cosgrove SE, Carmeli Y (2003) The impact of antimicrobial resistance on health and economic outcomes. Clin Infect Dis 36:1433–1437CrossRefGoogle Scholar
  7. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nature Rev Microbiol 3:777–788CrossRefGoogle Scholar
  8. Daum RS (2007) Skin and soft-tissue infections caused by methicillinresistant Staphylococcus aureus. N Engl J Med 357:380–390CrossRefGoogle Scholar
  9. de Jong A, van Hijum SAFT., Bijlsma JJE, Kok J, Kuipers OP (2006) BAGEL: a web-based bacteriocin genome mining tool. Nucleic Acids Res 34:273–279CrossRefGoogle Scholar
  10. Fialkov JA, Holy C, Forrest CR, Phillip JH, Antonyshyn OM (2001) Postoperative infections in craniofacial reconstructive procedures. J Craniofac Surg 12:362–368CrossRefGoogle Scholar
  11. Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como Sabetti K, Jernigan JA (2005) Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med 352:1436–1444CrossRefGoogle Scholar
  12. Gratia A (1925) Sur un remarquable exemple d’antagonisme entre deux souches de coilbacille. Comp Rend Soc Biol 93:1040–1041Google Scholar
  13. Heng NCK, Wescombe PA, Burton JP, Jack RW, Tagg JR (2007) The diversity of bacteriocins in Gram-positive bacteria. In: Riley MA, Chavan M (eds) Bacteriocins: ecology and evolution. Springer, Berlin, pp 45–92CrossRefGoogle Scholar
  14. Kirkup BC (2006) Bacteriocins as oral and gastrointestinal antibiotics: theoretical considerations, applied research, and practical applications. Curr Med Chem 13:335–3350CrossRefGoogle Scholar
  15. Krishnan V, Johnson JV, Helfrick JF (1993) Management of maxillofacial infections: a review of 50 cases. J Oral Maxillofac Surg 51:868–873CrossRefGoogle Scholar
  16. Kumar S, Tamura K, Nei M (2004) Mega3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163CrossRefGoogle Scholar
  17. Mathur H, Field D, Rea MC, Cotter PD, Hill C, Ross RP (2017) Bacteriocin-antimicrobial synergy: a medical and food perspective. Front Microbiol 8:1205CrossRefGoogle Scholar
  18. McDougall PP, Shane S, Oviatt BM (1994) Explaining the formation of international new ventures: the limits of theories from international business research. J Bus Ventur 9(6):469–487CrossRefGoogle Scholar
  19. Meyer J, Rogne P, Opegard C, Haugen H, Kristiansen P (2009) Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Curr Pharm Biotechnol 10:19–37CrossRefGoogle Scholar
  20. Motta AS, Brandelli A (2008) Evaluation of environmental conditions for production of bacteriocin-like substance by Bacillus sp. strain P34. World J Micro Biotech 24:641–646CrossRefGoogle Scholar
  21. Naz SA, Jabeen N, Sohail M, Rasool SA (2015) Biophysicochemical characterization of Pyocin SA 189 Produced by Pseudomonas aeroginosa SA189. Braz J Micro 46 (4):1147–1154CrossRefGoogle Scholar
  22. Okesola AO (2011) Community-acquired methicillin-resistant Staphylococcus aureus - a review of literature. Afr J Med Sci 40:97–107Google Scholar
  23. Otto M (2008) Staphylococcal biofilms. Curr Top Microbiol Immunol 322:207–228Google Scholar
  24. Padilla C, Lobos O, Brevis P (2002) Effect of the bacteriocin PsVP- 10 produced by Pseudomonas sp. On sensitive bacterial strains. De Microbiologia 44:19–23Google Scholar
  25. Papagianni M (2003) Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotech Adv 21:465–499CrossRefGoogle Scholar
  26. Piper C, Hill C, Cotter PD, Ross RP (2011) Bioengineering of a nisin A-producing Lactococcus lactis to create isogenic strains producing the natural variants nisin F, Q, and Z. Microb Biotech 4:375–382CrossRefGoogle Scholar
  27. Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137CrossRefGoogle Scholar
  28. Rubiee R, Mudhaffar S, Hassan F (1988) Purification and characterization of pyocins from Pseudomonas aeroginosa. Folia Microbiol 30:25–29Google Scholar
  29. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  30. Saleem F, Ahmed S, Yaqoob Z (2009) Comparative study of two bacteriocins produced by representative indigenous soil bacteria. Pak J Pharma Sci 22:252–258Google Scholar
  31. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Nova YorkGoogle Scholar
  32. Sano Y, Kageyama M (1981) Purification and properties of an S-type pyocin, Pyocin AP41. J Bacteriol 146:733–739Google Scholar
  33. Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379CrossRefGoogle Scholar
  34. Severina E, Severin A, Tomasz A (1998) Antibacterial efficacy of nisin against multidrug-resistant Gram-positive pathogens. J Antimicrob Chemother 41:341–347CrossRefGoogle Scholar
  35. Shand RF, Leyva KJ (2008) Archaeal antimicrobials: an undiscovered country. In: Blum P (ed) Archaea: new models for prokaryotic biology. Caister Academic, Norfolk, pp 233–242Google Scholar
  36. Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriocins of Gram-positive bacteria. Bacteriol Rev 40:722–756Google Scholar
  37. Toba T, Yoshioka E, Itoh T (1991) Potential of Lactobacillus gasseri isolated from infant faeces to produce bacteriocin. Lett Appl Microbio 12:228–231CrossRefGoogle Scholar
  38. Vindenes H, Bjerknes R (1995) Microbial colonization of large wounds. Burns 21:575–579CrossRefGoogle Scholar
  39. Williams I, Paul F, Lloyd D, Jepras R, Critchley I, Newman M (1999) Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture. Microbiology 145:1325–1333CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Thangarasu Arumugam
    • 1
  • Selvam Dhanam
    • 1
  • Neelamegam Rameshkumar
    • 2
  • Muthukalingan Krishnan
    • 2
  • Nagarajan Kayalvizhi
    • 1
    Email author
  1. 1.Department of Zoology, School of Life SciencesPeriyar UniversitySalemIndia
  2. 2.Insect Molecular Biology Laboratory, Department of Environmental BiotechnologyBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations