Advertisement

Development and Evaluation of Peptide-Functionalized Gold Nanoparticles for HIV Integrase Inhibition

  • Lavanya SinghEmail author
  • Hendrik G. Kruger
  • Glenn E. M. Maguire
  • Thavendran Govender
  • Raveen Parboosing
Article
  • 145 Downloads

Abstract

The HIV integrase enzyme represents an important target for HIV inhibition because it is essential for viral replication and there is no cellular counterpart. Blocking HIV replication at this early stage of the viral life cycle can also prevent the establishment of viral reservoirs in the form of latently infected cells. Complications such as drug resistance and other adverse side effects associated with HIV treatment necessitate novel approaches for HIV inhibition. Nanoparticle-based systems are fast revolutionizing the biomedical field with applications in infectious disease diagnosis and treatment, and are important tools to investigate for HIV targeting. This study explores the development of gold nanoparticles functionalized with a hexapeptide, previously demonstrated to inhibit integrase at low micromolar concentrations. We also sought to investigate the effect of Tat peptide incorporation to facilitate both cellular and nuclear entry, so that both cytoplasmic and nuclear events mediated by integrase, could be targeted. Therefore, the aim of this study is to synthesize, characterize and evaluate the antiviral activity of nanoparticle-peptide complexes. Our results showed no obvious HIV inhibitory activity, but did provide original and fundamental in vitro data for this potent hexapeptide when challenged with HIV infection. Further insight into the optimization of gold nanoparticle functionalization with peptides is also provided.

Keywords

Peptide Integrase HIV Strand transfer inhibitor Nanoparticle 

Notes

Acknowledgements

The authors would like to acknowledge the National Health Laboratory Service Research Trust (Grant Number: 94503) and the National Research Foundation Thuthuka Funding Instrument (Grant Number: 99294) for the financial support. The authors would also like to thank Dr Andrew Swanson for the images in Fig. 1.

References

  1. Albericio F (2000) Orthogonal protecting groups for Nα-amino and C-terminal carboxyl functions in solid-phase peptide synthesis. Pept Sci 55:123–139CrossRefGoogle Scholar
  2. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles Molecular. Pharmaceutics 5:505–515Google Scholar
  3. Ali R, Rani R, Kumar S (2013) New peptide based therapeutic approaches. In: Sheikh IA, Ashraf GM (eds) Advances in protein chemistry. OMICS Group Incorporation. Available at: http://www.esciencecentral.org/ebooks/advances-in-protein-chemistry/
  4. Ammassari A et al (2001) Self-reported symptoms and medication side effects influence adherence to highly active antiretroviral therapy in persons with HIV infection JAIDS. J Acquir Immune Defic Syndr 28:445–449CrossRefGoogle Scholar
  5. Bechara C, Sagan S (2013) Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett 587:1693–1702CrossRefGoogle Scholar
  6. Blanco JL, Whitlock G, Milinkovic A, Moyle G (2015) HIV integrase inhibitors: a new era in the treatment of HIV. Expert Opin Pharmacother 16:1313–1324CrossRefGoogle Scholar
  7. Chow SA, Vincent KA (1992) Reversal of integration and DNA splicing mediated by integrase of human. Immunodefic Virus Sci 255:723Google Scholar
  8. Clark-Lewis I, Schumacher C, Baggiolini M, Moser B (1991) Structure-activity relationships of interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil chemotaxis, exocytosis, and receptor binding activities. J Biol Chem 266:23128–23134Google Scholar
  9. Collins JM, Porter KA, Singh SK, Vanier GS (2014) High-efficiency solid phase peptide synthesis (HE-SPPS). Org Lett 16:940–943CrossRefGoogle Scholar
  10. Conde J, Dias JT, Grazú V, Moros M, Baptista PV, de la Fuente JM (2014) Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem 2:48CrossRefGoogle Scholar
  11. Dalton N (2007) Design and development of peptide-based HIV-1 integrase inhibitors, Doctor of Philosophy thesis, School of Chemistry, University of Wollongong. Available at: http://ro.uow.edu.au/theses/1921
  12. de Soultrait VR et al (2002) A novel short peptide is a specific inhibitor of the human immunodeficiency virus type 1 integrase. J Mol Biol 318:45–58CrossRefGoogle Scholar
  13. de Soultrait V, Desjobert C, Tarrago-Litvak L (2003) Peptides as new inhibitors of HIV-1 reverse transcriptase and integrase. Curr Med Chem 10:1765–1778CrossRefGoogle Scholar
  14. Deng J et al (2007) Discovery of structurally diverse HIV-1 integrase inhibitors based on a chalcone pharmacophore. Bioorg Med Chem 15:4985–5002CrossRefGoogle Scholar
  15. Deshayes S, Morris MC, Divita G, Heitz F (2005) Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci 62:1839–1849CrossRefGoogle Scholar
  16. Dwyer JJ et al (2007) Design of helical, oligomeric HIV-1 fusion inhibitor peptides with potent activity against enfuvirtide-resistant virus. Proc Natl Acad Sci 104:12772–12777CrossRefGoogle Scholar
  17. Ellison V, Brown PO (1994) A stable complex between integrase and viral DNA ends mediates human immunodeficiency virus integration in vitro. Proc Natl Acad Sci 91:7316–7320CrossRefGoogle Scholar
  18. Engelman A, Mizuuchi K, Craigie R (1991) HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67:1211–1221CrossRefGoogle Scholar
  19. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128CrossRefGoogle Scholar
  20. Fratila RM, Mitchell SG, del Pino P, Grazu V, de la Fuente JsM (2014) Strategies for the biofunctionalization of gold and iron oxide nanoparticles. Langmuir 30:15057–15071CrossRefGoogle Scholar
  21. Gabizon A et al (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54:987–992Google Scholar
  22. Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters European. J Pharm Biopharm 69:1–9CrossRefGoogle Scholar
  23. Goujard C et al (2003) Impact of a patient education program on adherence to HIV medication. J Acquir Immune Defic Syndr 34:191–194CrossRefGoogle Scholar
  24. Ham AS, Cost MR, Sassi AB, Dezzutti CS, Rohan LC (2009) Targeted delivery of PSC-RANTES for HIV-1 prevention using biodegradable nanoparticles. Pharm Res 26:502–511CrossRefGoogle Scholar
  25. Hazuda DJ et al (2000) Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 287:646–650CrossRefGoogle Scholar
  26. Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F (2013) Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop J Pharm Res 12:7–11Google Scholar
  27. Ito T, Sun L, Bevan MA, Crooks RM (2004) Comparison of nanoparticle size and electrophoretic mobility measurements using a carbon-nanotube-based coulter counter, dynamic light scattering, transmission electron microscopy, and phase analysis light scattering. Langmuir 20:6940–6945CrossRefGoogle Scholar
  28. Kalmodia S et al (2016) Bio-conjugation of antioxidant peptide on surface-modified gold nanoparticles: a novel approach to enhance the radical scavenging property in cancer cell. Cancer Nanotechnol 7:1CrossRefGoogle Scholar
  29. Kilby JM et al (1998) Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med 4:1302–1307CrossRefGoogle Scholar
  30. Krajewski K, Long Y-Q, Marchand C, Pommier Y, Roller PP (2003) Design and synthesis of dimeric HIV-1 integrase inhibitory peptides. Bioorg Med Chem Lett 13:3203–3205CrossRefGoogle Scholar
  31. Krajewski K, Marchand C, Long Y-Q, Pommier Y, Roller PP (2004) Synthesis and HIV-1 integrase inhibitory activity of dimeric and tetrameric analogs of indolicidin. Bioorg Med Chem Lett 14:5595–5598CrossRefGoogle Scholar
  32. Kumar A et al (2012) Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials 33:1180–1189CrossRefGoogle Scholar
  33. Latham PW (1999) Therapeutic peptides revisited. Nat Biotechnol 17:755–757CrossRefGoogle Scholar
  34. Lévy R et al (2004) Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J Am Chem Soc 126:10076–10084CrossRefGoogle Scholar
  35. Li H-Y, Zawahir Z, Song L-D, Long Y-Q, Neamati N (2006) Sequence-based design and discovery of peptide inhibitors of HIV-1 integrase: insight into the binding mode of the enzyme. J Med Chem 49:4477–4486CrossRefGoogle Scholar
  36. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217CrossRefGoogle Scholar
  37. Liu Y, Shipton MK, Ryan J, Kaufman ED, Franzen S, Feldheim DL (2007) Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide—poly (ethylene glycol) monolayers. Anal Chem 79:2221–2229CrossRefGoogle Scholar
  38. Lutzke RP, Eppens NA, Weber PA, Houghten RA, Plasterk R (1995) Identification of a hexapeptide inhibitor of the human immunodeficiency virus integrase protein by using a combinatorial chemical library. Proc Natl Acad Sci 92:11456–11460CrossRefGoogle Scholar
  39. Maes M, Loyter A, Friedler A (2012) Peptides that inhibit HIV-1 integrase by blocking its protein–protein interactions. FEBS J 279:2795–2809CrossRefGoogle Scholar
  40. Mamo T et al (2010) Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine 5:269–285CrossRefGoogle Scholar
  41. McNeil SE (2011) Unique benefits of nanotechnology to drug delivery and diagnostics. In: McNeil SE (ed) Characterization of nanoparticles intended for drug delivery. Springer, New York, pp 3–8CrossRefGoogle Scholar
  42. Moody IS, Verde SC, Overstreet CM, Robinson WE, Weiss GA (2012) In vitro evolution of an HIV integrase binding protein from a library of C-terminal domain γS-crystallin variants. Bioorg Med Chem Lett 22:5584–5589CrossRefGoogle Scholar
  43. Mulder KC, Lima LA, Miranda VJ, Dias SC, Franco OL (2013) Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol 4:321CrossRefGoogle Scholar
  44. Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, Shi J (2012) Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 134:5722–5725CrossRefGoogle Scholar
  45. Pannecouque C, Daelemans D, De Clercq E (2008) Tetrazolium-based colorimetric assay for the detection of HIV replication inhibitors: revisited 20 years later. Nat Protoc 3:427–434CrossRefGoogle Scholar
  46. Parboosing R, Chonco L, de la Mata FJ, Govender T, Maguire GEM, Kruger HG (2017) Potential inhibition of HIV-1 encapsidation by oligoribonucleotide-dendrimer nanoparticle complexes International. J Nanomed 12:317–325CrossRefGoogle Scholar
  47. Pirmohamed M, Breckenridge AM, Kitteringham NR, Park BK (1998) Adverse drug reactions. BMJ 316:1295CrossRefGoogle Scholar
  48. Platt EJ, Bilska M, Kozak SL, Kabat D, Montefiori DC (2009) Evidence that ecotropic murine leukemia virus contamination in TZM-bl cells does not affect the outcome of neutralizing antibody assays with human immunodeficiency virus type 1. J Virol 83:8289–8292CrossRefGoogle Scholar
  49. Pommier Y, Marchand C, Neamati N (2000) Retroviral integrase inhibitors year 2000: update and perspectives. Antivir Res 47:139–148CrossRefGoogle Scholar
  50. Puertas MC, Buzón MJ, Ballestero M, Van Den Eede P, Clotet B, Prado JG, Martinez-Picado J (2012) Novel two-round phenotypic assay for protease inhibitor susceptibility testing of recombinant and primary HIV-1 isolates. J Clin Microbiol 50:3909–3916CrossRefGoogle Scholar
  51. Qiu X et al (2012) Surface functionalized gold nanorods: tracking and observing live cell via three optical signals. J Nanosci Nanotechnol 12:6893–6899CrossRefGoogle Scholar
  52. Qureshi A, Thakur N, Kumar M (2013) HIPdb: a database of experimentally validated HIV inhibiting peptides. PLoS ONE 8:e54908CrossRefGoogle Scholar
  53. Raja A, Lebbos J, Kirkpatrick P (2003) Atazanavir sulphate. Nat Rev Drug Discov 2:857–858CrossRefGoogle Scholar
  54. Roberts M, Bentley M, Harris J (2012) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 64:116–127CrossRefGoogle Scholar
  55. Santos-Martinez MJ et al (2014) Pegylation increases platelet biocompatibility of gold nanoparticles. J Biomed Nanotechnol 10:1004–1015CrossRefGoogle Scholar
  56. Sarzotti-Kelsoe M et al (2014) Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J Immunol Methods 409:131–146CrossRefGoogle Scholar
  57. Si S, Mandal TK (2007) Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chem-A Eur J 13:3160–3168CrossRefGoogle Scholar
  58. Silhol M, Tygi M, Giacca M, Lebleu B, Vives E (2002) Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. FEBS J 269:494–501Google Scholar
  59. Singh L, Parboosing R, Kruger HG, Maguire GE, Govender T (2016) Intracellular localization of gold nanoparticles with targeted delivery in MT-4 lymphocytes. Adv Nat Sci 7:045013Google Scholar
  60. Sosibo NM, Keter FK, Skepu A, Tshikhudo RT, Revaprasadu N (2015) Facile attachment of TAT peptide on gold monolayer protected clusters: synthesis characterization. Nanomaterials 5:1211–1222CrossRefGoogle Scholar
  61. Tkachenko AG et al (2004) Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconj Chem 15:482–490CrossRefGoogle Scholar
  62. Torchilin VP (2012) Multifunctional nanocarriers. Adv Drug Deliv Rev 64:302–315CrossRefGoogle Scholar
  63. Truant R, Cullen BR (1999) The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Mol Cell Biol 19:1210–1217CrossRefGoogle Scholar
  64. Vacca J et al (1994) L-735,524: an orally bioavailable human immunodeficiency virus type 1 protease inhibitor. Proc Natl Acad Sci 91:4096–4100CrossRefGoogle Scholar
  65. Vlasnik JJ, Aliotta SL, DeLor B (2005) Medication adherence: factors influencing compliance with prescribed medication plans. Case Manager 16:47–51CrossRefGoogle Scholar
  66. Wainberg MA, Drosopoulos WC, Salomon H, Hsu M (1996) Enhanced fidelity of 3TC-selected mutant HIV-1 reverse transcriptase. Science 271:1282CrossRefGoogle Scholar
  67. Wang F, Ross J (2003) Atazanavir: a novel azapeptide inhibitor of HIV-1 protease. Formulary 38:691–691Google Scholar
  68. Wangoo N, Bhasin K, Mehta S, Suri CR (2008) Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: bioconjugation and binding studies. J Colloid Interface Sci 323:247–254CrossRefGoogle Scholar
  69. Wei X et al (2002) Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 46:1896–1905CrossRefGoogle Scholar
  70. WHO (2017) 10 Facts on HIV/AIDS. http://www.who.int/mediacentre/factsheets/fs360/en/. Accessed 17 May 2017
  71. Zanchet D, Micheel CM, Parak WJ, Gerion D, Williams SC, Alivisatos AP (2002) Electrophoretic and structural studies of DNA-directed Au nanoparticle groupings. J Phys Chem B 106:11758–11763CrossRefGoogle Scholar
  72. Zeinalipour-Loizidou E, Nicolaou C, Nicolaides A, Kostrikis LG (2007) HIV-1 integrase: from biology to chemotherapeutics. Curr HIV Res 5:365–388CrossRefGoogle Scholar
  73. Zhao L, O’Reilly MK, Shultz MD, Chmielewski J (2003) Interfacial peptide inhibitors of HIV-1 integrase activity and dimerization. Bioorg Med Chem Lett 13:1175–1177CrossRefGoogle Scholar
  74. Ziegler A, Nervi P, Dürrenberger M, Seelig J (2005) The cationic cell-penetrating peptide CPPTAT derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence. Biochemistry 44:138–148CrossRefGoogle Scholar
  75. Zong J, Cobb SL, Cameron NR (2017) Peptide-functionalized gold nanoparticles: versatile biomaterials for diagnostic and therapeutic applications. Biomater Sci 5:872–886CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lavanya Singh
    • 1
    Email author
  • Hendrik G. Kruger
    • 2
  • Glenn E. M. Maguire
    • 2
  • Thavendran Govender
    • 2
  • Raveen Parboosing
    • 1
  1. 1.Department of Virology, National Health Laboratory ServiceUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.Catalysis and Peptide Research Unit, School of ChemistryUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations