Advertisement

FTIR and MS Evidence for Heavy Metal Binding to Anti-amyloidal NAP-Like Peptides

  • Ancuta Veronica Lupaescu
  • Monica Jureschi
  • Catalina Ionica Ciobanu
  • Laura Ion
  • Gheorghita Zbancioc
  • Brindusa Alina Petre
  • Gabi DrochioiuEmail author
Short Communication
  • 108 Downloads

Abstract

The octapeptide NAP (NAPVSIPQ) is a small sequence from the activity-dependent neuroprotective protein (ADNP), which is able to provide neuroprotection against Aβ toxicity even at low concentration. NAP provides protection against oxidative stress to brain cells and stimulates neurite outgrowth providing a neurotrophic and neuroprotective function. Therefore, we have investigated copper and silver binding to two NAP-like peptides, since our previous research revealed unexpected iron binding to such peptides. Here, we report on Cu(I) and Ag(I) binding to NAP and its Cys5 mutant. Our results revealed that NAP bind up to two silver ions but only one of copper as shown by Fourier transform infrared (FTIR) spectroscopy and MALDI-ToF mass spectrometry (MS). Surprisingly, its Cys5 mutant can bind four silver ions or three of copper, despite the fact that it is a small peptide molecule. The results were discussed in the view of NAP protection against Aβ induced neurotoxicity associated with Alzheimer disease (AD) and the relationship between Aβ peptides and heavy metal ions.

Keywords

NAP peptide FTIR MALDI-ToF MS Copper binding Silver binding Alzheimer disease 

Notes

Acknowledgements

Funding from the Romanian Government (UEFISCDI Bucharest, PN-III-P4-ID-PCE-2016-0376; Contract 56 of 12.06.2017) is gratefully acknowledged. B.A. Petre acknowledges the PN-II-RU-TE-2014-4-0920 project for MS experiments.

References

  1. Bansal S, Maurya IK, Yadav N, Thota CK, Kumar V, Tikoo K, Chauhan VS, Jain R (2016) C-terminal fragment, Aβ32-37, analogues protect against Aβ aggregation-induced toxicity. ACS Chem Neurosci 7:615–623.  https://doi.org/10.1021/acschemneuro.6b00006 CrossRefGoogle Scholar
  2. Barth A (2000) The infrared absorption of amino acid side chains. Prog Biophys Mol Biol 74:141–173.  https://doi.org/10.1016/S0079-6107(00)00021-3 CrossRefGoogle Scholar
  3. Bush AI (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci 26:207–214.  https://doi.org/10.1016/S0166-2236(03)00067-5 CrossRefGoogle Scholar
  4. Ciobanu CI, Stefanescu R, Niculaua M, Teslaru T, Gradinaru R, Drochioiu G, Letter (2016) Mass spectrometric evidence for iron binding to the neuroprotective peptide NAP and its Cys5 mutant. Eur J Mass Spectrom 22:97–104.  https://doi.org/10.1255/ejms.1414 CrossRefGoogle Scholar
  5. Giles NM, Watts AB, Giles GI, Fry FH, Littlechild JA, Jacob C (2003a) Metal and redox modulation of cysteine protein function. Chem Biol 10(8):677–693.  https://doi.org/10.1016/S1074-5521(03)00174-1 CrossRefGoogle Scholar
  6. Giles NM, Giles GI, Jacob C (2003b) Multiple roles of cysteine in biocatalysis. Biochem Biophys Res Commun 300(1):1–4.  https://doi.org/10.1016/S0006-291X(02)02770-5 CrossRefGoogle Scholar
  7. Gozes I, Zamostiano R, Pinhasov A, Bassan M, Giladi E, Steingart RA, Brenneman DE (2000) A novel VIP responsive gene. Activity dependent neuroprotective protein. Ann N Y Acad Sci 921:115–118.  https://doi.org/10.1111/j.1749-6632.2000.tb06957.x CrossRefGoogle Scholar
  8. Gozes I, Morimoto BH, Tiong J, Fox A, Sutherland K, Dangoor D, Holser-Cochav M, Vered K, Newton P, Aisen PS, Matsuoka Y, Dyck CH, Thal L (2006) NAP: research and development of a peptide derived from activity-dependent neuroprotective protein (ADNP). CNS Drug Rev 11:353–368.  https://doi.org/10.1111/j.1527-3458.2005.tb00053.x CrossRefGoogle Scholar
  9. Gozes I, Divinski I, Piltzer I (2008) NAP and D-SAL: neuroprotection against the beta amyloid peptide (1–42). BMC Neurosci 9(Suppl 3):S3.  https://doi.org/10.1186/1471-2202-9-S3-S3 CrossRefGoogle Scholar
  10. Haris PI, Chapman D (1995) The conformational analysis of peptides using fourier transform IR spectroscopy. Biopolymers 37:251–263.  https://doi.org/10.1002/bip.360370404 CrossRefGoogle Scholar
  11. Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, Cuajungco MP, Gray DN, Lim J, Moir RD, Tanzi RE, Bush AI (1999) The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38:7609–7616.  https://doi.org/10.1021/bi990438f CrossRefGoogle Scholar
  12. Ivanov AR, Nazimova IV, Baratova L (2000) Determination of biologically active low-molecular-mass thiols in human blood: I. Fast qualitative and quantitative, gradient and isocratic reversed-phase high-performance liquid chromatography with photometric and fluorescence detection. J Chromatogr A 895(2):157–166.  https://doi.org/10.1016/S0021-9673(00)00713-5 CrossRefGoogle Scholar
  13. Jacobsen DW (1998) Homocysteine and vitamins in cardiovascular disease. Clin Chem 44:1833–1843Google Scholar
  14. Kozlowski H, Luczkowski M, Remelli M, Valensin D (2012) Copper, zinc and iron in neurodegenerative diseases (Alzheimer’s, Parkinson’s and prion diseases). Coord Chem Rev 256:2129–2141.  https://doi.org/10.1016/j.ccr.2012.03.013 CrossRefGoogle Scholar
  15. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158(1):47–52.  https://doi.org/10.1016/S0022-510X(98)00092-6 CrossRefGoogle Scholar
  16. Magen I, Gozes I, Davunetide (2014) Peptide therapeutic in neurological disorders. Curr Med Chem 21:2591–2598.  https://doi.org/10.2174/0929867321666140217124945 CrossRefGoogle Scholar
  17. Patiny L, Borel A, ChemCalc: (2013) A building block for tomorrow’s chemical infrastructure. J Chem Inf Model 53:1223–1228.  https://doi.org/10.1021/ci300563h CrossRefGoogle Scholar
  18. Perez LR, Franz KJ (2010) Minding metals: tailoring multifunctional chelating agents for neurodegenerative disease. Dalton Trans 39:2177–2187.  https://doi.org/10.1039/B919237A CrossRefGoogle Scholar
  19. Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R, Li Q-X, Tammer A, Carrington D, Mavros C, Volitakis I, Xilinas M, Ames D, Davis S, Beyreuther K, Tanzi RE, Masters CL (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 60:1685–1691.  https://doi.org/10.1001/archneur.60.12.1685 CrossRefGoogle Scholar
  20. Roberson ED, Mucke L (2006) 100 years and counting: prospects for defeating Alzheimer’s disease. Science 314:781–784.  https://doi.org/10.1126/science.1132813 CrossRefGoogle Scholar
  21. Sachdeva S (2017) Peptides as “drugs”: the journey so far. Int J Pept Res Ther 23:49–60.  https://doi.org/10.1007/s10989-016-9534-8 CrossRefGoogle Scholar
  22. Shoeib T, Rodriquez CF, Michael Siu KW, Hopkinson AC (2001) A comparison of copper(I) and silver(I) complexes of glycine, diglycine and triglycine. Phys Chem Chem Phys 3:853–861.  https://doi.org/10.1039/B008836F CrossRefGoogle Scholar
  23. Thomas JA, Mallis R, Sies H (2003) Protein S-thiolation, S-nitrosylation, and irreversible sulfhydryl oxidation: roles in redox regulation. Cell Implications Redox Signal World Sci Publ.  https://doi.org/10.1142/9781848160033_0007 Google Scholar
  24. Vellas B, Sol O, Snyder PJ, Ousset P-J, Haddad R, Maurin M, Lemarié J-C, Désiré L, Pando MP (2011) EHT0202/002 study group, EHT0202 in Alzheimer’s disease: a 3-month, randomized, placebo-controlled, double-blind study. Curr Alzheimer Res 8:203–212.  https://doi.org/10.2174/156720511795256053 CrossRefGoogle Scholar
  25. Wilkemeyer MF, Chen SY, Menkari CE, Brenneman DE, Sulik KK, Charness ME (2003) Differential effects of ethanol antagonism and neuroprotection in peptide fragment NAPVSIPQ prevention of ethanol-induced developmental toxicity. Proc Natl Acad Sci USA 100:8543–8548.  https://doi.org/10.1073/pnas.1331636100 CrossRefGoogle Scholar
  26. Willis MS, Monaghan SA, Miller ML, McKenna RW, Perkins WD, Levinson BS, Kroft SH (2005) Zinc-induced copper deficiency: a report of three cases initially recognized on bone marrow examination. Am J Clin Pathol 123(1):125–131.  https://doi.org/10.1309/V6GVYW2QTYD5C5PJ CrossRefGoogle Scholar
  27. Yin N (2014) Enhancing the oral bioavailability of peptide drugs by using chemical modification and other approaches. Med Chem.  https://doi.org/10.4172/2161-0444.1000227 Google Scholar
  28. Zheng H, Blat D, Fridkin M (2006) Novel neuroprotective neurotrophic NAP analogs targeting metal toxicity and oxidative stress: potential candidates for the control of neurodegenerative diseases., J Neural Transm Suppl 71:163–172.  https://doi.org/10.1007/978-3-211-33328-0_18 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ancuta Veronica Lupaescu
    • 1
  • Monica Jureschi
    • 1
  • Catalina Ionica Ciobanu
    • 2
  • Laura Ion
    • 1
  • Gheorghita Zbancioc
    • 1
  • Brindusa Alina Petre
    • 1
    • 3
  • Gabi Drochioiu
    • 1
    Email author
  1. 1.Faculty of ChemistryAl. I. Cuza University of IasiIasiRomania
  2. 2.Research Department, Faculty of Chemistry“Al. I. Cuza” UniversityIasiRomania
  3. 3.Center for Fundamental Research and Experimental Development in Translation Medicine – TRANSCENDRegional Institute of OncologyIasiRomania

Personalised recommendations