Advertisement

Effects of Pituitary Adenylate Cyclase Activating Polypeptide in Human Proximal Tubule Cells Against Gentamicin Toxicity

  • G. HorvathEmail author
  • D. Reglodi
  • P. Czetany
  • A. Illes
  • Gy. Reman
  • A. Fekete
  • G. Toth
  • E. Laszlo
  • B. Opper
Short Communication

Abstract

Nephrotoxicity by aminoglycoside antibiotics is a common cause of drug-induced nephropathy. Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide first isolated from hypothalamus, but later shown in widespread distribution. It exerts general cytoprotective effects in different cell types. Renoprotective effects of PACAP have been shown in various in vivo and in vitro experiments, but it is still not known whether it protects human proximal tubular cells against gentamicin toxicity. The aim of the present study was to investigate whether PACAP could influence the survival rate of human proximal tubular epithelial cells exposed to gentamicin treatment. For investigating its effect on cell survival after gentamicin treatment, cell viability was evaluated using MTT assay. Obtaining further insight into the background mechanism of gentamicin exposure and PACAP’s effect, expression of numerous kidney-related proteins was investigated using kidney biomarker array. Our results show that PACAP had protective effects against gentamicin-induced decreased cell viability, while it did not influence the proliferation activity of HK-2 cells. PACAP could counteract the expression-decreasing effect of gentamicin on dipeptidyl peptidase IV and vascular endothelial growth factor as assessed by kidney biomarker array. In summary, our present study could prove the protective effect of exogenous PACAP in gentamicin-induced nephrotoxicity.

Keywords

HK-2 Pituitary adenylate cyclase activating polypeptide Cytoprotection Cell survival Aminoglycoside 

Notes

Acknowledgements

EFOP-3.6.1.-16-2016-00004, Comprehensive Development for Implementing Smart Specialization Strategies at the University of Pecs/Centre for neuroscience, EFOP-3.6.2-16-2017-00008, “The role of neuro-inflammation in neurodegeneration: from molecules to clinics”, PTE AOK Research Grant KA-2016-03, KA-2017-17, OTKA (NKFIH) 115874 and 119759, 2017-1.2.1-NKP-2017-00002, Bolyai Scholarship, GINOP-2.3.2-15-2016-00050 “PEPSYS”, LP2011-08/2011, MTA-TKI 14016.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

Human and Animal Rights

There were neither human nor animal experiments in our studies. Every experiment was done using cell line purchased from ATCC.

Informed Consent

Informed consent was not needed because of the in vitro nature of the investigations.

References

  1. Banki E, Kovacs K, Nagy D, Juhasz T, Degrell P, Csanaky K, Kiss P, Jancso G, Toth G, Tamas A, Reglodi D (2014a) Molecular mechanisms underlying the nephroprotective effects of PACAP in diabetes. J Mol Neurosci 54:300–309.  https://doi.org/10.1007/s12031-014-0249-z CrossRefGoogle Scholar
  2. Banki E, Pakai E, Gaszner B, Zsiboras C, Czett A, Bhuddi PR, Hashimoto H, Toth G, Tamas A, Reglodi D, Garami A (2014b) Characterization of the thermoregulatory response to pituitary adenylate cyclase-activating polypeptide in rodents. J Mol Neurosci 54:543–554.  https://doi.org/10.1007/s12031-014-0361-0 CrossRefGoogle Scholar
  3. Bardosi S, Bardosi A, Nagy Z, Reglodi D (2016) Expression of PACAP and PAC1 receptor in normal human thyroid gland and in thyroid papillary carcinoma. J Mol Neurosci 60:171–178.  https://doi.org/10.1007/s12031-016-0823-7 CrossRefGoogle Scholar
  4. Blais A, Morvan-Baleynaud J, Friedlander G, Le Grimellec C (1993) Primary culture of rabbit proximal tubules as a cellular model to study nephrotoxicity of xenobiotics. Kidney Int 44:13–18CrossRefGoogle Scholar
  5. Braas KM, May V, Zvara P, Nausch B, Kliment J, Dunleavy JD, Nelson MT, Vizzard MA (2006) Role for pituitary adenylate cyclase activating polypeptide in cystitis-induced plasticity of micturition reflexes. Am J Physiol Regul Integr Comp Physiol 290:R951–R962.  https://doi.org/10.1152/ajpregu.00734.2005 CrossRefGoogle Scholar
  6. Brubel R, Horvath G, Reglodi D, Lubics A, Tamas A, Kiss P, Laszlo E, Nemeth J, Mark L, Szakaly P (2011) Presence of pituitary adenylate cyclase activating polypeptide and its type I receptor in the rat kidney. Transplant Proc 43:1297–1299.  https://doi.org/10.1016/j.transproceed.2011.03.081 CrossRefGoogle Scholar
  7. Canipari R, Di Paolo V, Barberi M, Cecconi S (2016) PACAP in the reproductive system. In: Reglodi D, Tamas A (eds) Pituitary adenylate cyclase activating polypeptide-PACAP. Springer, New York, pp 405–420CrossRefGoogle Scholar
  8. Chen LF, Kaye D (2009) Current use for old antibacterial agents: polymyxins, rifamycins, and aminoglycosides. Inf Dis Clin North Am 23:1053–1075.  https://doi.org/10.1016/j.mcna.2011.03.007 CrossRefGoogle Scholar
  9. Clason TA, Girard BM, May V, Parsons RL (2016) Activation of MEK/ERK signaling by PACAP in guinea pig cardiac neurons. J Mol Neurosci 59:309–316.  https://doi.org/10.1007/s12031-016-0766-z CrossRefGoogle Scholar
  10. Collado B, Gutierrez-Canas I, Rodríguez-Henche N, Prieto JC, Carmena MJ (2004) Vasoactive intestinal peptide increases vascular endothelial growth factor expression and neuroendocrine differentiation in human prostate cancer LNCaP cells. Regul Pept 119:69–75.  https://doi.org/10.1016/j.regpep.2004.01.013 CrossRefGoogle Scholar
  11. Collier VU, Lietman PS, Mitch WE (1979) Evidence for luminal uptake of gentamicin in the perfused rat kidney. J Pharmacol Exp Ther 210:247–251Google Scholar
  12. Egri P, Fekete C, Denes A, Reglodi D, Hashimoto H, Fulop BD, Gereben B (2016) Pituitary adenylate cyclase-activating polypeptide (PACAP) regulates the hypothalamo-pituitary-thyroid (HPT) axis via type 2 deiodinase in male mice. Endocrinology 157:2356–2366.  https://doi.org/10.1210/en.2016-1043 CrossRefGoogle Scholar
  13. Elekes K, Sandor K, Moricz A, Kereskai L, Kemeny A, Szoke E, Perkecz A, Reglodi D, Hashimoto H, Pinter E, Szolcsanyi J, Helyes Z (2011) Pituitary adenylate cyclase-activating polypeptide plays an anti-inflammatory role in endotoxin-induced airway inflammation: in vivo study with gene-deleted mice. Peptides 32:1439–1446.  https://doi.org/10.1016/j.peptides.2011.05.008 CrossRefGoogle Scholar
  14. Eneman B, Elmonem MA, van den Heuvel LP, Khodaparast L, Khodaparast L, van Geet C, Freson K, Levtchenko E (2017) Pituitary adenylate cyclase-activating polypeptide (PACAP) in zebrafish models of nephrotic syndrome. PLoS ONE 12(7):e0182100.  https://doi.org/10.1371/journal.pone.0182100 CrossRefGoogle Scholar
  15. Farkas J, Sandor B, Tamas A, Kiss P, Hashimoto H, Nagy AD, Fulop BD, Juhasz T, Manavalan S, Reglodi D (2017) Early neurobehavioral development of mice lacking endogenous PACAP. J Mol Neurosci 61:468–478.  https://doi.org/10.1007/s12031-017-0887-z CrossRefGoogle Scholar
  16. Ferencz A, Racz B, Tamas A, Reglodi D, Lubics A, Nemeth J, Nedvig K, Kalmar-Nagy K, Horvath OP, Weber G, Roth E (2009) Influence of PACAP on oxidative stress and tissue injury following small-bowel autotransplantation. J Mol Neurosci 37:168–176.  https://doi.org/10.1007/s12031-008-9132-0 CrossRefGoogle Scholar
  17. Gardiner SM, Rakhit T, Kemp PA, March JE, Bennett T (1994) Regional haemodynamic responses to pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide in conscious rats. Br J Pharmacol 111:589–597CrossRefGoogle Scholar
  18. Girard BM, Malley SE, Mathews MM, May V, Vizzard MA (2016) Intravesical PAC1 receptor antagonist, PACAP(6–38), reduces urinary bladder frequency and pelvic sensitivity in NGF-OE Mice. J Mol Neurosci 59:290–299.  https://doi.org/10.1007/s12031-016-0764-1 CrossRefGoogle Scholar
  19. Girardi AC, Degray BC, Nagy T, Biemesderfer D, Aronson PS (2001) Association of Na(+)-H(+) exchanger isoform NHE3 and dipeptidyl peptidase IV in the renal proximal tubule. J Biol Chem 276:46671–46677.  https://doi.org/10.1074/jbc.M106897200 CrossRefGoogle Scholar
  20. Han P, Liang W, Baxter LC, Yin J, Tang Z, Beach TG, Caselli RJ, Reiman EM, Shi J (2014) Pituitary adenylate cyclase-activating polypeptide is reduced in Alzheimer disease. Neurology 82:1724–1728.  https://doi.org/10.1212/WNL.0000000000000417 CrossRefGoogle Scholar
  21. Hautmann M, Friis UG, Desch M, Todorov V, Castrop H, Segerer F, Otto C, Schutz G, Schweda F (2007) Pituitary adenylate cyclase activating polypeptide stimulates renin secretion via activation of PAC1 receptors. J Am Soc Nephrol 18:1150–1156.  https://doi.org/10.1681/ASN.2006060633 CrossRefGoogle Scholar
  22. Horvath G, Mark L, Brubel R, Szakaly P, Racz B, Kiss P, Tamas A, Helyes Z, Lubics A, Hashimoto H, Baba A, Shintani N, Furjes G, Nemeth J, Reglodi D (2010) Mice deficient in pituitary adenylate cyclase activating polypeptide display increased sensitivity to renal oxidative stress in vitro. Neurosci Lett 469:70–74.  https://doi.org/10.1016/j.neulet.2009.11.046 CrossRefGoogle Scholar
  23. Horvath G, Brubel R, Kovacs K, Reglodi D, Opper B, Ferencz A, Szakaly P, Laszlo E, Hau L, Kiss P, Tamas A, Racz B (2011) Effects of PACAP on oxidative stress-induced cell death in rat kidney and human hepatocyte cells. J Mol Neurosci 43:67–75.  https://doi.org/10.1007/s12031-010-9428-8 CrossRefGoogle Scholar
  24. Horvath G, Illes A, Heimesaat MM, Bardosi A, Bardosi S, Tamas A, Fulop BD, Opper B, Nemeth J, Ferencz A, Reglodi D (2016) Protective intestinal effects of pituitary adenylate cyclase activating polypeptide. In: Reglodi D, Tamas A (eds) Pituitary adenylate cyclase activating polypeptide-PACAP. Springer, New York, pp 271–288CrossRefGoogle Scholar
  25. Ivic I, Fulop BD, Juhasz T, Reglodi D, Toth G, Hashimoto H, Tamas A, Koller A (2017) Backup mechanisms maintain PACAP/VIP-induced arterial relaxations in pituitary adenylate cyclase-activating polypeptide-deficient mice. J Vasc Res 54:180–192.  https://doi.org/10.1159/000457798 CrossRefGoogle Scholar
  26. Kemeny A, Reglodi D, Cseharovszky R, Hashimoto H, Baba A, Szolcsanyi J, Pinter E, Helyes Z (2010) Pituitary adenylate cyclase-activating polypeptide deficiency enhances oxazolone-induced allergic contact dermatitis in mice. J Mol Neurosci 42:443–449.  https://doi.org/10.1007/s12031-010-9368-3 CrossRefGoogle Scholar
  27. Kenny AJ, Booth AG, George SG, Ingram J, Kershaw D, Wood EJ, Young AR (1976) Dipeptidyl peptidase IV, a kidney brush-border serine peptidase. Biochem J 157:169–182CrossRefGoogle Scholar
  28. Khan AM, Batuman V (2016) Renoprotective effects of pituitary adenylate cyclase-activating polypeptide 38 (PACAP38). In: Reglodi D, Tamas A (eds) Pituitary adenylate cyclase activating polypeptide-PACAP. Springer, New York, pp 289–312CrossRefGoogle Scholar
  29. Khan AM, Li M, Brant E, Maderdrut JL, Majid DS, Simon EE, Batuman V (2011) Renoprotection with pituitary adenylate cyclase-activating polypeptide in cyclosporine A-induced nephrotoxicity. J Investig Med 59:793–802.  https://doi.org/10.2310/JIM.0b013e31821452a2 CrossRefGoogle Scholar
  30. Kvarik T, Mammel B, Reglodi D, Kovacs K, Werling D, Bede B, Vaczy A, Fabian E, Toth G, Kiss P, Tamas A, Ertl T, Gyarmati J, Atlasz T (2016) PACAP is protective in a rat model of retinopathy of prematurity. J Mol Neurosci 60:179–185.  https://doi.org/10.1007/s12031-016-0797-5 CrossRefGoogle Scholar
  31. Laszlo E, Kiss P, Horvath G, Szakaly P, Tamas A, Reglodi D (2014) The effects of pituitary adenylate cyclase activating polypeptide in renal ischemia/reperfusion. Acta Biol Hung 65:369–378.  https://doi.org/10.1556/ABiol.65.2014.4.1 CrossRefGoogle Scholar
  32. Laszlo E, Varga A, Kovacs K, Jancso G, Kiss P, Tamas A, Szakaly P, Fulop B, Reglodi D (2015) Ischemia/reperfusion-induced kidney injury in heterozygous PACAP-deficient mice. Transplant Proc 47:2210–2215.  https://doi.org/10.1016/j.transproceed.2015.07.027 CrossRefGoogle Scholar
  33. Li M, Maderdrut JL, Lertora JJ, Arimura A, Batuman V (2008) Renoprotection by pituitary adenylate cyclase-activating polypeptide in multiple myeloma and other kidney diseases. Regul Pept 145:24–32.  https://doi.org/10.1016/j.regpep.2007.09.012 CrossRefGoogle Scholar
  34. Li M, Balamuthusamy S, Khan AM, Maderdrut JL, Simon EE, Batuman V (2010) Pituitary adenylate cyclase-activating polypeptide ameliorates cisplatin-induced acute kidney injury. Peptides 31:592–602.  https://doi.org/10.1016/j.peptides.2009.12.018 CrossRefGoogle Scholar
  35. Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ (2011) New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int 79:33–45.  https://doi.org/10.1038/ki.2010.337 CrossRefGoogle Scholar
  36. Ma BQ, Zhang M, Ba L (2015) Plasma pituitary adenylate cyclase-activating polypeptide concentrations and mortality after acute spontaneous basal ganglia hemorrhage. Clin Chim Acta 439:102–106.  https://doi.org/10.1016/j.cca.2014.10.010 CrossRefGoogle Scholar
  37. Matsumoto M, Nakamachi T, Watanabe J, Sugiyama K, Ohtaki H, Murai N, Sasaki S, Xu Z, Hashimoto H, Seki T, Miyazaki A, Shioda S (2016) Pituitary adenylate cyclase-activating polypeptide (PACAP) is involved in adult mouse hippocampal neurogenesis after stroke. J Mol Neurosci 59:270–279.  https://doi.org/10.1007/s12031-016-0731-x CrossRefGoogle Scholar
  38. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–574CrossRefGoogle Scholar
  39. Moody TW, Leyton J, Casibang M, Pisegna J, Jensen RT (2002) PACAP-27 tyrosine phosphorylates mitogen activated protein kinase and increases VEGF mRNAs in human lung cancer cells. Regul Pept 109:135–140CrossRefGoogle Scholar
  40. Nakamachi T, Ohtaki H, Seki T, Yofu S, Kagami N, Hashimoto H, Shintani N, Baba A, Mark L, Lanekoff I, Kiss P, Farkas J, Reglodi D, Shioda S (2016) PACAP suppresses dry eye signs by stimulating tear secretion. Nat Commun 7:12034.  https://doi.org/10.1038/ncomms12034 CrossRefGoogle Scholar
  41. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13:9–22CrossRefGoogle Scholar
  42. Nilsson SF (1994) PACAP-27 and PACAP-38: Vascular effects in the eye and some other tissues in the rabbit. Eur J Pharmacol 253:17–25CrossRefGoogle Scholar
  43. Reglodi D, Kiss P, Lubics A, Tamas A (2011) Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo. Curr Pharm Des 17:962–972CrossRefGoogle Scholar
  44. Reglodi D, Kiss P, Horvath G, Lubics A, Laszlo E, Tamas A, Racz B, Szakaly P (2012) Effects of pituitary adenylate cyclase activating polypeptide in the urinary system, with special emphasis on its protective effects in the kidney. Neuropeptides 46:61–70.  https://doi.org/10.1016/j.npep.2011.05.001 CrossRefGoogle Scholar
  45. Reglodi D, Helyes Z, Nemeth J, Vass RA, Tamas A (2016) PACAP as a potential biomarker: alterations of PACAP levels in human physiological and pathological conditions. In: Reglodi D, Tamas A (eds) Pituitary adenylate cyclase activating polypeptide-PACAP. Springer, New York, pp 815–832CrossRefGoogle Scholar
  46. Reglodi D, Renaud J, Tamas A, Tizabi Y, Socías SB, Del-Bel E, Raisman-Vozari R (2017) Novel tactics for neuroprotection in Parkinson’s disease: role of antibiotics, polyphenols and neuropeptides. Prog Neurobiol 155:120–148.  https://doi.org/10.1016/j.pneurobio.2015.10.004 CrossRefGoogle Scholar
  47. Ribatti D, Conconi MT, Nussdorfer GG (2007) Nonclassic endogenous novel regulators of angiogenesis. Pharmacol Rev 59:185–205.  https://doi.org/10.1124/pr.59.2.3 CrossRefGoogle Scholar
  48. Roth E, Weber G, Kiss P, Horvath G, Toth G, Gasz B, Ferencz A, Gallyas F Jr, Reglodi D, Racz B (2009) Effects of PACAP and preconditioning against ischemia/reperfusion-induced cardiomyocyte apoptosis in vitro. Ann N Y Acad Sci 1163:512–516.  https://doi.org/10.1111/j.1749-6632.2008.03635.x CrossRefGoogle Scholar
  49. Sakamoto K, Kuno K, Takemoto M, He P, Ishikawa T, Onishi S, Ishibashi R, Okabe E, Shoji M, Hattori A, Yamaga M, Kobayashi K, Kawamura H, Tokuyama H, Maezawa Y, Yokote K (2015) Pituitary adenylate cyclase-activating polypeptide protects glomerular podocytes from inflammatory injuries. J Diabetes Res 2015:727152.  https://doi.org/10.1155/2015/727152 CrossRefGoogle Scholar
  50. Sandor B, Fintor K, Reglodi D, Fulop DB, Helyes Z, Szanto I, Nagy P, Hashimoto H, Tamas A (2016) Structural and morphometric comparison of lower incisors in PACAP-deficient and wild-type mice. J Mol Neurosci 59:300–308.  https://doi.org/10.1007/s12031-016-0765-0 CrossRefGoogle Scholar
  51. Schrijvers BF, Flyvbjerg A, De Vriese AS (2004) The role of vascular endothelial growth factor (VEGF) in renal pathophysiology. Kidney Int 65:2003–2017.  https://doi.org/10.1111/j.1523-1755.2004.00621.x CrossRefGoogle Scholar
  52. Somogyvari-Vigh A, Reglodi D (2004) Pituitary adenylate cyclase activating polypeptide: a potential neuroprotective peptide. Curr Pharm Des 10:2861–2889CrossRefGoogle Scholar
  53. Szakaly P, Kiss P, Lubics A, Magyarlaki T, Tamas A, Racz B, Lengvari I, Toth G, Reglodi D (2008) Effects of PACAP on survival and renal morphology in rats subjected to renal ischemia/reperfusion. J Mol Neurosci 36:89–96.  https://doi.org/10.1007/s12031-008-9064-8 CrossRefGoogle Scholar
  54. Szakaly P, Laszlo E, Kovacs K, Racz B, Horvath G, Ferencz A, Lubics A, Kiss P, Tamas A, Brubel R, Opper B, Baba A, Hashimoto H, Farkas J, Matkovits A, Magyarlaki T, Helyes Z, Reglodi D (2011) Mice deficient in pituitary adenylate cyclase activating polypeptide (PACAP) show increased susceptibility to in vivo renal ischemia/reperfusion injury. Neuropeptides 45:113–121.  https://doi.org/10.1016/j.npep.2010.12.003 CrossRefGoogle Scholar
  55. Tamas A, Javorhazy A, Reglodi D, Sarlos DP, Banyai D, Semjen D, Nemeth J, Lelesz B, Fulop DB, Szanto Z (2016) Examination of PACAP-like immunoreactivity in urogenital tumor samples. J Mol Neurosci 59:177–183.  https://doi.org/10.1007/s12031-015-0652-0 CrossRefGoogle Scholar
  56. Tiruppathi C, Miyamoto Y, Ganapathy V, Roesel RA, Whitford GM, Leibach FH (1990) Hydrolysis and transport of proline-containing peptides in renal brush-border membrane vesicles from dipeptidyl peptidase IV-positive and dipeptidyl peptidase IV-negative rat strains. J Biol Chem 265:1476–1483Google Scholar
  57. Vaczy A, Reglodi D, Somoskeoy T, Kovacs K, Lokos E, Szabo E, Tamas A, Atlasz T (2016) The protective role of PAC1-receptor agonist maxadilan in BCCAO-induced retinal degeneration. J Mol Neurosci 60:186–194.  https://doi.org/10.1007/s12031-016-0818-4 CrossRefGoogle Scholar
  58. Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BK, Hashimoto H, Galas L, Vaudry H (2009) Pituitary adenylate cyclase activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61:283–357.  https://doi.org/10.1124/pr.109.001370 CrossRefGoogle Scholar
  59. Zhu L, Tamvakopoulos C, Xie D, Dragovic J, Shen X, Fenyk-Melody JE, Schmidt K, Bagchi A, Griffin PR, Thornberry NA, Sinha Roy R (2003) The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1–38). J Biol Chem 278:22418–22423.  https://doi.org/10.1074/jbc.M212355200 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Anatomy, MTA-PTE PACAP Research Team, Centre for NeuroscienceUniversity of Pecs Medical SchoolPecsHungary
  2. 2.1st Department of Internal MedicineUniversity of Pecs Medical SchoolPecsHungary
  3. 3.1st Department of Pediatrics, MTA-SE Lendulet Diabetes Research TeamSemmelweis UniversityBudapestHungary
  4. 4.Medical ChemistryUniversity of SzegedSzegedHungary

Personalised recommendations