Advertisement

Spontaneous Release of Human Serum Albumin S-Bound Homocysteine in a Thiol-Free Physiological Medium

  • Angelo ZinelluEmail author
  • Salvatore Sotgia
  • Arduino A. Mangoni
  • Elisabetta Sotgiu
  • Dionigia Arru
  • Panagiotis Paliogiannis
  • Shantanu Sengupta
  • Ciriaco Carru
Article
  • 54 Downloads

Abstract

Elevated plasma homocysteine (Hcy) concentrations independently predict cardiovascular disease. However, the transport of Hcy into pathological tissues such as atherosclerotic plaques, characterized by relatively low local thiol concentrations, is largely unknown. We sought to address if albumin-bound Hcy can be released in a thiol-free medium with or without previous incubation with Hcy and homocysteine thiolactone (HTL). We found that Hcy release was dependent on the baseline amount of albumin-bound Hcy. After 48 h incubation in a thiol- free medium the quantity of albumin-bound Hcy released from commercial human serum albumin (HSA) was 1.15 mmol/mol prot. If HSA was pre-incubated with 50 µmol/L reduced Hcy and then transferred into a free-thiol medium (HSA-S-Hcy), the amount of Hcy released after 48 h increased to 33.5 mmol/mol prot. If HSA was pre-incubated with 5 mmol/L HTL and then with 50 µmol/L of reduced Hcy (HSA-HTL-S-Hcy), the amount of Hcy released increased to 92.8 mmol/mol prot. Hcy release from HSA-HTL-S-Hcy further increased in presence of cysteine (Cys), glutathione (GSH), or Cys + GSH in the medium. Therefore, a significant amount of albumin-bound Hcy is released into thiol-free environments, similar to atherosclerotic plaques, with potential deleterious effects on vascular homeostasis, atherosclerosis and thrombosis.

Keywords

Albumin Homocysteine N-homocysteinylation S-homocysteinylation 

Abbreviations

Cys

Cysteine

Hcy

Homocysteine

GSH

Glutathione

HSA

Human serum albumin

HSA-S-Hcy

Albumin-S-homocysteinylated

HSA-HTL-S-Hcy

Albumin-N-S-homocysteinylated

HTL

Homocysteine thiolactone

LMW

Low molecular weight

Notes

Acknowledgements

Arduino A. Mangoni has participated to this work during a Visiting Professorship at the University of Sassari.

Compliance with Ethical Standards

Conflict of interest

The authors declares that there is no conflict of interest regarding the publication of this paper.

References

  1. Berman RS, Martin W (1993) Arterial endothelial barrier dysfunction: actions of homocysteine and the hypoxanthine-xanthine oxidase free radical generating system. Br J Pharmacol 108:920–926CrossRefGoogle Scholar
  2. Carru C, Deiana L, Sotgia S, Pes GM, Zinellu A (2004) Plasma thiols redox status by laser-induced fluorescence capillary electrophoresis. Electrophoresis 25:882–889CrossRefGoogle Scholar
  3. de Vries JI, Dekker GA, Huijgens PC, Jakobs C, Blomberg BM, van Geijn HP (1997) Hyperhomocysteinaemia and protein S deficiency in complicated pregnancies. Br J Obstet Gynaecol 104:1248–1254CrossRefGoogle Scholar
  4. Eikelboom JW, Lonn E, Genest J Jr, Hankey G, Yusuf S (1999) Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann Intern Med 131:363–375CrossRefGoogle Scholar
  5. Finkelstein JD (1990) Methionine metabolism in mammals. J Nutr Biochem 1:228–237CrossRefGoogle Scholar
  6. Friedman MH, Fry DL (1993) Arterial permeability dynamics and vascular disease. Atherosclerosis 104:189–194CrossRefGoogle Scholar
  7. Jakubowski H (1997) Metabolism of homocysteine thiolactone in human cell cultures. Possible mechanism for pathological consequences of elevated homocysteine levels. J Biol Chem 272:1935–1942Google Scholar
  8. Jakubowski H (2002) Homocysteine is a protein amino acid in humans. Implications for homocysteine-linked disease. J Biol Chem 277:30425–30428CrossRefGoogle Scholar
  9. Jakubowski H, Goldman E (1993) Synthesis of homocysteine thiolactone by methionyl-tRNA synthetase in cultured mammalian cells. FEBS Lett 317:237–240CrossRefGoogle Scholar
  10. Jiang X, Yang F, Brailoiu E, Jakubowski H, Dun NJ, Schafer AI, Yang X, Durante W, Wang H (2007) Differential regulation of homocysteine transport in vascular endothelial and smooth muscle cells. Arterioscler Thromb Vasc Biol 27:1976–1983CrossRefGoogle Scholar
  11. Karner G, Perktold K (2000) Effect of endothelial injury and increased blood pressure on albumin accumulation in the arterial wall: a numerical study. J Biomech 33:709–715CrossRefGoogle Scholar
  12. Lepedda AJ, Cigliano A, Cherchi GM, Spirito R, Maggioni M, Carta F, Turrini F, Edelstein C, Scanu AM, Formato M (2009) A proteomic approach to differentiate histologically classified stable and unstable plaques from human carotid arteries. Atherosclerosis 203:112–118CrossRefGoogle Scholar
  13. Lepedda AJ, Zinellu A, Nieddu G, Zinellu E, Carru C, Spirito R, Guarino A, De Muro P, Formato M (2013) Protein sulfhydryl group oxidation and mixed-disulfide modifications in stable and unstable human carotid plaques. Oxid Med Cell Longev 2013:403973Google Scholar
  14. Majors AK, Sengupta S, Willard B, Kinter MT, Pyeritz RE, Jacobsen DW (2002) Homocysteine binds to human plasma fibronectin and inhibits its interaction with fibrin. Arterioscler Thromb Vasc Biol 22:1354–1359CrossRefGoogle Scholar
  15. Malinowska J, Olas B (2012) Homocysteine and its thiolactone-mediated modification of fibrinogen affect blood platelet adhesion. Platelets 23:409–412CrossRefGoogle Scholar
  16. Mansoor MA, Svardal AM, Ueland PM (1992) Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma. Anal Biochem 200:218–229CrossRefGoogle Scholar
  17. Meigs JB, Jacques PF, Selhub J, Singer DE, Nathan DM, Rifai N, D’Agostino Sr RB, Wilson PW (2001) Fasting plasma homocysteine levels in the insulin resistance syndrome: the Framingham offspring study. Diabetes Care 24:1403–1410CrossRefGoogle Scholar
  18. Mills JL, McPartlin JM, Kirke PN, Lee YJ, Conley MR, Weir DG, Scott JM (1995) Homocysteine metabolism in pregnancies complicated by neural-tube defects. Lancet 345:149–151CrossRefGoogle Scholar
  19. Mudd SH, Finkelstein JD, Refsum H, Ueland PM, Malinow MR, Lentz SR, Jacobsen DW, Brattstrom L, Wilcken B, Wilcken DE, Blom HJ, Stabler SP, Allen RH, Selhub J, Rosenberg IH (2000) Homocysteine and its disulfide derivatives: a suggested consensus terminology. Arterioscler Thromb Vasc Biol 20:1704–1706CrossRefGoogle Scholar
  20. Perła-Kaján J, Twardowski T, Jakubowski H (2007) Mechanisms of homocysteine toxicity in humans. Amino Acids 32:561–572CrossRefGoogle Scholar
  21. Pianka P, Almog Y, Man O, Goldstein M, Sela BA, Loewenstein A (2000) Hyperhomocystinemia in patients with nonarteritic anterior ischemic optic neuropathy, central retinal artery occlusion, and central retinal vein occlusion. Ophthalmology 107:1588–1592CrossRefGoogle Scholar
  22. Regland B, Johansson BV, Grenfeldt B, Hjelmgren LT, Medhus M (1995) Homocysteinemia is a common feature of schizophrenia. J Neural Transm Gen Sect 100:165–169CrossRefGoogle Scholar
  23. Sengupta S, Chen H, Togawa T, DiBello PM, Majors AK, Büdy B, Ketterer ME, Jacobsen DW (2001a) Albumin thiolate anion is an intermediate in the formation of albumin-S-S-homocysteine. J Biol Chem 276:30111–30117CrossRefGoogle Scholar
  24. Sengupta S, Wehbe C, Majors AK, Ketterer ME, DiBello PM, Jacobsen DW (2001b) Relative roles of albumin and ceruloplasmin in the formation of homocystine, homocysteine-cysteine-mixed disulfide, and cystine in circulation. J Biol Chem 276:46896–46904CrossRefGoogle Scholar
  25. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483CrossRefGoogle Scholar
  26. Sikora M, Marczak L, Twardowski T, Stobiecki M, Jakubowski H (2010) Direct monitoring of albumin lysine-525 N-homocysteinylation in human serum by liquid chromatography/mass spectrometry. Anal Biochem 405:132–134CrossRefGoogle Scholar
  27. Spahr PF, Edsall JT (1964) Amino acid composition of Human and bovine serum mercaptalbumin. J Biol Chem 239:850–854Google Scholar
  28. Steed MM, Tyagi SC (2011) Mechanisms of cardiovascular remodeling in hyperhomocysteinemia. Antioxid Redox Signal 15:1927–1943CrossRefGoogle Scholar
  29. Ueland PM (1995) Homocysteine species as components of plasma redox thiol status. Clin Chem 41:340–342Google Scholar
  30. Wang H, Tan H, Yang F (2005) Mechanisms in homocysteine-induced vascular disease. Drug Discov Today 2:25–31CrossRefGoogle Scholar
  31. Wierzbicki AS (2007) Homocysteine and cardiovascular disease: a review of the evidence. Diab Vasc Dis Res 4:143–150CrossRefGoogle Scholar
  32. Zinellu A, Carru C, Galistu F, Usai MF, Pes GM, Baggio G, Federici G, Deiana L (2003) N-methyl-d-glucamine improves the laser-induced fluorescence capillary electrophoresis performance in the total plasma thiols measurement. Electrophoresis 24:2796–2804CrossRefGoogle Scholar
  33. Zinellu A, Carru C, Sotgia S, Deiana L (2004) Plasma D-penicillamine redox state evaluation by capillary electrophoresis with laser-induced fluorescence. J Chromatogr B: Anal Technol Biomed Life Sci 803:299–304CrossRefGoogle Scholar
  34. Zinellu A, Lepedda AJ, Sotgia S, Zinellu E, Scanu B, Turrini F, Spirito R, Deiana L, Formato M, Carru C (2009a) Evaluation of low molecular mass thiols content in carotid atherosclerotic plaques. Clin Biochem 42:796–801CrossRefGoogle Scholar
  35. Zinellu A, Sotgia S, Scanu B, Pintus G, Posadino AM, Cossu A, Deiana L, Sengupta S, Carru C (2009b) S-homocysteinylated LDL apolipoprotein B adversely affects human endothelial cells in vitro. Atherosclerosis 206:40–46CrossRefGoogle Scholar
  36. Zinellu A, Lepedda AJ, Sotgia S, Zinellu E, Marongiu G, Usai MF, Gaspa L, De Muro P, Formato M, Deiana L, Carru C (2010a) Albumin-bound low molecular weight thiols analysis in plasma and carotid plaques by CE. J Sep Sci 33:126–131CrossRefGoogle Scholar
  37. Zinellu A, Sotgia S, Scanu B, Pisanu E, Sanna M, Sati S, Deiana L, Sengupta S, Carru C (2010b) Determination of homocysteine thiolactone, reduced homocysteine, homocystine, homocysteine-cysteine mixed disulfide, cysteine and cystine in a reaction mixture by overimposed pressure/voltage capillary electrophoresis. Talanta 82:1281–1285CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Biomedical SciencesUniversity of SassariSassariItaly
  2. 2.Department of Clinical Pharmacology, Flinders Medical CentreFlinders UniversityAdelaideAustralia
  3. 3.Functional Genomics UnitCSIR-Institute of Genomics and Integrative BiologyDelhiIndia
  4. 4.Quality Control UnitUniversity Hospital (AOUSS)SassariItaly

Personalised recommendations