ACPP: A Web Server for Prediction and Design of Anti-cancer Peptides

Article

Abstract

Cancer is one of the most common diseases, which causes more mortality worldwide. Despite the presence of several therapies against cancer, peptides as therapeutic agents are gaining importance. Experimental studies report that peptides containing apoptotic domain exhibit anticancer activity. Hence in this study, we propose a computational method using support vector machine and protein relatedness measure feature vector, in which provision was made to assess the query protein for the presence of any apoptotic domains or not and then to scan/predict the anti-cancer peptides in the protein. Different datasets, including newly developed positive and negative dataset, AntiCP dataset, and balanced randomly generated peptides were used to validate the proposed method. The validation results on independent dataset suggested (sensitivity = 0.95; specificity = 0.97; MCC = 0.92; and Accuracy = 0.96) that the proposed method outperformed the existing method in predicting anti-cancer peptides. The user friendly webserver includes three different modes (i) Protein scan with apoptotic domain prediction; (ii) Multiple peptide mode; and (iii) Peptide mutation mode for prediction and design of anti-cancer peptides. The server was developed using PERL CGI and freely accessible at http://acpp.bicpu.edu.in/predict.php. The established tool will be useful in investigating and designing potent anti-cancer peptides from the query protein effectively.

Keywords

Anti-cancer peptides Cancer Apoptotic domain prediction SVM Protein relatedness Measure ACPP 

Supplementary material

10989_2014_9435_MOESM1_ESM.pdf (497 kb)
Supplementary material 1 (PDF 497 kb)

References

  1. Ashburner M et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. doi:10.1038/75556 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Breiman L (2001) Random forests. Mach learn 45:5–32CrossRefGoogle Scholar
  3. Cai D et al (2014) Hydrophobic penetrating peptide PFVYLI-modified stealth liposomes for doxorubicin delivery in breast cancer therapy. Biomaterials 35:2283–2294PubMedCrossRefGoogle Scholar
  4. Carr K, Murray E, Armah E, He RL, Yau SS-T (2010) A rapid method for characterization of protein relatedness using feature vectors. PLoS ONE 5:e9550PubMedCentralPubMedCrossRefGoogle Scholar
  5. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2:27Google Scholar
  6. Consortium U (2013) Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res 41:D43–D47CrossRefGoogle Scholar
  7. Cortes C, Vapnik V (1995) Support vector machine. Machine learning 20:273–297Google Scholar
  8. Ellerby HM et al (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5:1032–1038. doi:10.1038/12469 PubMedCrossRefGoogle Scholar
  9. El-Manzalawy Y, Honavar V (2005) WLSVM: Integrating libsvm into WEKA environment. Software available at http://www.csiastateedu/yasser/wlsvm. Accessed 14 Jan 2012
  10. Freund Y, Schapire R, Abe N (1999) A short introduction to boosting. J Jpn Soc Artif Intell 14:1612Google Scholar
  11. Gautam A, Singh H, Tyagi A, Chaudhary K, Kumar R, Kapoor P, Raghava G (2012) CPPsite: a curated database of cell penetrating peptides. Database 2012:bas015Google Scholar
  12. Gautam A, Kapoor P, Chaudhary K, Kumar R, Raghava G, Consortium SDD (2014) Tumor homing peptides as molecular probes for cancer therapeutics, diagnostics and theranostics. Curr Med Chem 21:2367–2391PubMedCrossRefGoogle Scholar
  13. Hajisharifi Z, Piryaiee M, Mohammad Beigi M, Behbahani M, Mohabatkar H (2014) Predicting anticancer peptides with Chou’s pseudo amino acid composition and investigating their mutagenicity via Ames test. J Theor Biol 341:34–40. doi:10.1016/j.jtbi.2013.08.037 PubMedCrossRefGoogle Scholar
  14. Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682. doi:10.1093/bioinformatics/btq003 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Huang YB, Wang XF, Wang HY, Liu Y, Chen Y (2011) Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol Cancer Ther 10:416–426. doi:10.1158/1535-7163.MCT-10-0811 PubMedCrossRefGoogle Scholar
  16. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. doi:10.3322/caac.20107 PubMedCrossRefGoogle Scholar
  17. Jones P et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240PubMedCentralPubMedCrossRefGoogle Scholar
  18. Kakde D, Jain D, Shrivastava V, Kakde R, Patil A (2011) Cancer therapeutics-opportunities, challenges and advances in drug delivery. J Appl Pharm Sci 1:1–10Google Scholar
  19. Karbalaeemohammad S, Naderi-Manesh H (2011) Two novel anticancer peptides from Aurein1. 2. Int J Pept Res Ther 17:159–164CrossRefGoogle Scholar
  20. Mendoza FJ, Espino PS, Cann KL, Bristow N, McCrea K, Los MJ (2005) Anti-tumor chemotherapy utilizing peptide-based approaches-apoptotic pathways, kinases, and proteasome as targets. Arch Immunol Ther Exp 53:47–60Google Scholar
  21. Mehta D et al (2014) ParaPep: a web resource for experimentally validated antiparasitic peptide sequences and their structures. Database 2014:bau051Google Scholar
  22. Novkovic M, Simunic J, Bojovic V, Tossi A, Juretic D (2012) DADP: the database of anuran defense peptides. Bioinformatics 28:1406–1407. doi:10.1093/bioinformatics/bts141 PubMedCrossRefGoogle Scholar
  23. Ramanathan K, Shanthi V, Rajasekaran R, Sudandiradoss C, Doss CGP, Sethumadhavan R (2011) Predicting Therapeutic Template by Evaluating the Structural Stability of Anti-Cancer Peptides—A Computational Approach. Int J Pept Res Ther 17:31–38CrossRefGoogle Scholar
  24. Ryu JS, Raucher D (2014) Anti-tumor efficacy of a therapeutic peptide based on thermo-responsive elastin-like polypeptide in combination with gemcitabine. Cancer Lett 348(1–2):177–184PubMedCrossRefGoogle Scholar
  25. Saravanan V, Lakshmi PT (2013a) APSLAP: an adaptive boosting technique for predicting subcellular localization of apoptosis protein. Acta Biotheor 61:481–497. doi:10.1007/s10441-013-9197-1 PubMedCrossRefGoogle Scholar
  26. Saravanan V, Lakshmi PT (2013b) SCLAP: an adaptive boosting method for predicting subchloroplast localization of plant proteins. OMICS 17:106–115. doi:10.1089/omi.2012.0070 PubMedCrossRefGoogle Scholar
  27. Saravanan V, Lakshmi P (2014a) Dualpred: A Webserver for Predicting Plant Proteins Dual-Targeted To Chloroplast and Mitochondria Using Split Protein-Relatedness-Measure Feature. Curr Bioinform. doi:10.2174/1574893609666140226000041 Google Scholar
  28. Saravanan V, Lakshmi P (2014b) Fuzzy Logic for Personalized Healthcare and Diagnostics: FuzzyApp-A Fuzzy Logic Based Allergen-Protein Predictor. OMICS 18:570–581. doi:10.1089/omi.2014.0021 PubMedCrossRefGoogle Scholar
  29. Shapira S, Fokra A, Arber N, Kraus S (2014) Peptides for Diagnosis and Treatment of Colorectal Cancer. Curr Med Chem 21:2410–2416PubMedCrossRefGoogle Scholar
  30. Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S (2010) CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res 38:D774–D780. doi:10.1093/nar/gkp1021 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Thundimadathil J (2012) Cancer treatment using peptides: current therapies and future prospects. J Amino Acids 2012:13. doi:10.1155/2012/967347 CrossRefGoogle Scholar
  32. Tyagi A, Kapoor P, Kumar R, Chaudhary K, Gautam A, Raghava GP (2013) In silico models for designing and discovering novel anticancer peptides. Sci Rep 3:2984. doi:10.1038/srep02984 PubMedCrossRefGoogle Scholar
  33. Uppada SB, Erickson T, Wojdyla L, Moravec DN, Song Z, Cheng J, Puri N (2014) Novel delivery system for T-oligo using a nanocomplex formed with an alpha helical peptide for melanoma therapy. Int J Nanomed 9:43Google Scholar
  34. Van Dorpe S et al (2012) Brainpeps: the blood–brain barrier peptide database. Brain Struct Funct 217:687–718PubMedCrossRefGoogle Scholar
  35. Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937. doi:10.1093/nar/gkn823 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Zhang H, Gu C (2008) Support vector machines versus Boosting. Electrical Engineering UC, BerkeleyGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Centre for Bioinformatics, School of Life SciencesPondicherry UniversityPondicherryIndia

Personalised recommendations