A Novel Antimicrobial Peptide Derived from the Insect Paederus dermatitis

  • Mina Memarpoor-Yazdi
  • Hadi Zare-Zardini
  • Ahmad Asoodeh
Article

Abstract

Much research has been focused on antimicrobial peptides (AMPs) derived from insect immune defense reactions due to their potential in the development of new antibiotics. In this study, a new AMP from the insect Paederus dermatitis, named sarcotoxin Pd was identified and purified using gel filtration and reverse-phase high-performance liquid chromatography. Our results showed that this peptide has broad-spectrum inhibitory effects on examined microbes. Sarcotoxin Pd is composed of 34 amino acids and its molecular weight was estimated to be 3613.26 ± 0.5 Da. Minimum inhibitory concentration (MIC) values of sarcotoxin Pd against Gram-negative bacteria were lower than Gram-positive bacteria and fungi. The identified peptide showed the highest antimicrobial effect against Klebsiella pneumonia and Escherichia coli. This peptide did not reveal significant hemolytic activity against human red blood cells particularly in the range of MIC values. Confirming the potential antimicrobial activities of synthetic peptide, this paper addresses the role of sarcotoxin Pd in the treatment of systemic microbial illnesses.

Keywords

Paederus dermatitis Antimicrobial peptides Gel filtration RP-HPLC MIC Hemolysis assay 

References

  1. Amiri A, Zare Zardini H, Shanbedi M, Maghrebi M, Baniadam M (2012) Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion. Mater Lett 72:153–156CrossRefGoogle Scholar
  2. Armstrong RK, Winfield JL (1969) Paederus fuscipes dermatitis. Am J Trop Med Hyg 18:147–150PubMedGoogle Scholar
  3. Asoodeh A, Zare Zardini H, Chamani J (2012) Identification and characterization of two novel antimicrobial peptides, temporin-Ra and temporin-Rb, from skin secretions of the marsh frog (Rana ridibunda). J Pepet Sci 18:10–16CrossRefGoogle Scholar
  4. Baek JH, Ji Y, Shin JS, Lee S, Lee SH (2011) Venom peptides from solitary hunting wasps induce feeding disorder in lepidopteran larvae. Peptides 32:568–572PubMedCrossRefGoogle Scholar
  5. Bensch KW, Raida M, Mgert HJ, Schulz-Knappe P, Forssmann W-G (1995) hBD-1: a novel α-defensin from human plasma. FEBS Lett 368:331–335PubMedCrossRefGoogle Scholar
  6. Boman HG (1991) Antibacterial peptides: key components needed in immunity. Cell 65:205–207PubMedCrossRefGoogle Scholar
  7. Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92PubMedCrossRefGoogle Scholar
  8. Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254:197–215PubMedCrossRefGoogle Scholar
  9. Bullet P, Urge L, Ohresser S, Hetru C, Otvos L (1996) Enlarged scale chemical synthesis and range of activity of drosocin, an O-glycosylated antibacterial peptide of drosophila. Eur J Biochem 238:64–69CrossRefGoogle Scholar
  10. Bullet P, Hetru C, Dimarcq JL, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 23:329–344CrossRefGoogle Scholar
  11. Bullet P, Charlet M, Hetru C (2003) In: Ezekowitz RAB, Hoffmann JA (eds) In innate immunity. Humana Press, Totowa, pp 89–107Google Scholar
  12. Conlon JM (2008) Reflections on a systematic nomenclature for antimicrobial peptides from the skins of frogs of the family Ranidae. Peptides 29:1815–1819PubMedCrossRefGoogle Scholar
  13. Cunliffe RN, Mahida YR (2004) Expression and regulation of antimicrobial peptides in the gastrointestinal tract. J Leukoc Biol 75:49–58PubMedCrossRefGoogle Scholar
  14. Dürr M, Peschel A (2002) Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defense. Infect Immun 70:6515–6517PubMedCrossRefGoogle Scholar
  15. Esteves E, Fogaça AC, Maldonado R, Silva FD, Manso PP, Pelajo-Machado M, Valle D, Daffre S (2009) Antimicrobial activity in the tick Rhipicephalus (Boophilus) microplus eggs: cellular localization and temporal expression of microplusin during oogenesis and embryogenesis. Dev Comp Immunol 33:913–919PubMedCrossRefGoogle Scholar
  16. Gelmetti C, Grimalt R (1993) Paederus dermatitis: an easy diagnosable but misdiagnosed eruption. Eur J Pediatr 152:6–8PubMedCrossRefGoogle Scholar
  17. Gnanaraj P, Venugopal V, Mozhi MK, Pandurangan CN (2007) An outbreak of Paederus dermatitis in a suburban hospital in South India: a report of 123 cases and review of literature. J Am Acad Dermatol 57:297–300PubMedCrossRefGoogle Scholar
  18. Godballe T, Nilsson LL, Petersen PD, Jenssen H (2011) Antimicrobial β-peptides and α-peptoids. Chem Biol Drug Des 77:107–116PubMedCrossRefGoogle Scholar
  19. Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323PubMedGoogle Scholar
  20. Hancock REW, Diamond G (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 8:402–410PubMedCrossRefGoogle Scholar
  21. Hancock REW, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotech 24:1551–1557CrossRefGoogle Scholar
  22. Hoffmann JA, Hetru C, Reichhart J-M (1993) The humoral antibacterial response of Drosophila. FEBS Lett 325:63–66PubMedCrossRefGoogle Scholar
  23. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RAB (1999) Phylogenetic perspectives in innate immunity. Science 284:1313–1318PubMedCrossRefGoogle Scholar
  24. Hwang JS, Lee J, Kim YJ, Bang HS, Yun EY, Kim SR, Suh HJ, Kang BR, Nam SH, Jeon JP, Kim I, Lee DG (2009) Isolation and characterization of a defensin-like peptide (coprisin) from the dung beetle, Copris tripartitus. Int J Pept 2009:136284PubMedGoogle Scholar
  25. Iwai H, Nakajima Y, Natori S, Arata Y, Shimada I (1993) Solution conformation of an antibacterial peptide, sarcotoxin IA, as determined by 1H-NMR. Eur J Biochem 217:639–644PubMedCrossRefGoogle Scholar
  26. Kang C, Son SY, Bang I (2008) Biologically active and C-amidated hinnavinII-38-Asn produced from a Trx fusion construct in Escherichia coli. J Microbiol 46:656–661PubMedCrossRefGoogle Scholar
  27. Kang JK, Hwang JS, Nam HJ, Ahn KJ, Seok H, Kim S-K, Yun EY, Pothoulakis C, Lamont JT, Kim H (2011) The insect peptide Coprisin prevents clostridium difficile-mediated acute inflammation and mucosal damage through selective antimicrobial activity. Antimicrob Agents Chemother 55:4850–4857PubMedCrossRefGoogle Scholar
  28. Katarina B, Jaroslav K, Jan K, Jozef S (2002) Identification of honeybee peptide active against Paenibacillus larvae larvae through bacterial growth-inhibition assay on polyacrylamide gel. Apidologie 33:259–269CrossRefGoogle Scholar
  29. Kulkarni MM, Barbi J, McMaster WR, Gallo RL, Satoskar AR, McGwire BS (2011) Mammalian antimicrobial peptide influences control of cutaneous Leishmania infection. Cell Microbiol 13:913–923PubMedCrossRefGoogle Scholar
  30. Lauth X, Nesin A, Briand JP, Roussel JP, Hetru C (1998) Isolation, characterization and chemical synthesis of a new insect defensin from Chironomus plumosus (Diptera). Insect Biochem Molec 28:1059–1066CrossRefGoogle Scholar
  31. Lu Y, Li J, Yu H, Xu X, Liang J, Tian Y, Ma D, Lin G, Huang G, Lai R (2006) Two families of antimicrobial peptides with multiple functions from skin of rufous-spotted torrent frog, Amolops loloensis. Peptides 27:3085–3091PubMedCrossRefGoogle Scholar
  32. Manners JM (2009) Primitive defence: the MiAMP1 antimicrobial peptide family. Plant Mol Biol Rep 27:237–242CrossRefGoogle Scholar
  33. Matsuyama K, Natori S (1990) Mode of action of sapecin, a novel antibacterial protein of Sarcophaga peregrina (flesh fly). J Biochem-Tokyo 108:128–132PubMedGoogle Scholar
  34. Memarpoor-Yazdi M, Asoodeh A, Chamani J (2012) A novel antioxidant and antimicrobial peptide from hen egg white lysozyme hydrolysates. J Funct Foods 4:278–286CrossRefGoogle Scholar
  35. Montaño AM, Tsujino F, Takahata N, Satta Y (2011) Evolutionary origin of peptidoglycan recognition proteins in vertebrate innate immune system. BMC Evol Biol 11:1471–2148CrossRefGoogle Scholar
  36. Nicholls DS, Christmas TI, Greig DE (1990) Oedemerid blister beetle dermatosis: a review. J Am Acad Dermatol 22:815–819PubMedCrossRefGoogle Scholar
  37. Rees JA, Moniatte M, Bullet P (1997) Novel antibacterial peptides isolated from a European bumblebee, Bombus pascuorum (Hymenoptera, apoidea). Insect Biochem Molec 27:413–422CrossRefGoogle Scholar
  38. Romanelli A, Moggio L, Montella RC, Campiglia P, Iannaccone M, Capuano F, Pedone C, Capparelli R (2011) Peptides from Royal Jelly: studies on the antimicrobial activity of jelleins, jelleins analogs and synergy with temporins. J Pepet Sci 17:348–352CrossRefGoogle Scholar
  39. Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22PubMedCrossRefGoogle Scholar
  40. Shao Z-Y, Mao H-X, Fu W-J, Ono M, Wang D-S, Bonizzoni M, Zhang Y-P (2004) Genetic structure of Asian populations of Bombus ignitus (Hymenoptera: Apidae). J Hered 95:46–52PubMedCrossRefGoogle Scholar
  41. Silverstein KA, Moskal WA Jr, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA (2007) Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J 51:262–280PubMedCrossRefGoogle Scholar
  42. Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248PubMedCrossRefGoogle Scholar
  43. Taguchi S, Mita K, Ichinohe K, Hashimoto S (2009) Targeted engineering of the antibacterial peptide apidaecin, based on an in vivo monitoring assay system. Appl Environ Microbiol 75:1460–1464PubMedCrossRefGoogle Scholar
  44. Toke O (2005) Antimicrobial peptides: new candidates in the fight against bacterial infections. Pept Sci 80:717–735CrossRefGoogle Scholar
  45. Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Pept Sci 55:4–30CrossRefGoogle Scholar
  46. Wang H, Lu Y, Zhang X, Hu Y, Yu H, Liu J, Sun J (2009) The novel antimicrobial peptides from skin of Chinese broad-folded frog, Hylarana latouchii (Anura:Ranidae). Peptides 30:273–282PubMedCrossRefGoogle Scholar
  47. Yang J, Furukawa S, Sagisaka A, Ishibashi J, Taniai K, Shono T, Yamakawa M (1999) cDNA cloning and gene expression of cecropin D, an antibacterial protein in the silkworm, Bombyx mori. Comp Biochem Physiol B 122:409–414PubMedCrossRefGoogle Scholar
  48. Zairi A, Tangy F, Bouassida K, Hani K (2009) Dermaseptins and magainins: antimicrobial peptides from frogs’ skin-new sources for a promising spermicides microbicides. J Biomed Biotechnol 2009:452567PubMedCrossRefGoogle Scholar
  49. Zardini HZ, Amiri A, Shanbedi M, Maghrebi M, Baniadam M (2012) Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloid Surf Ace B 92:196–202CrossRefGoogle Scholar
  50. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mina Memarpoor-Yazdi
    • 1
  • Hadi Zare-Zardini
    • 2
  • Ahmad Asoodeh
    • 3
  1. 1.Department of Biology, Faculty of Sciences, Mashhad BranchIslamic Azad UniversityMashhadIran
  2. 2.Young Researchers Club, Yazd BranchIslamic Azad UniversityYazdIran
  3. 3.Cellular and Molecular Research Group, Institute of BiotechnologyFerdowsi University of MashhadMashhadIran

Personalised recommendations