Peptide Scaffolds: Flexible Molecular Structures With Diverse Therapeutic Potentials

  • Radhika Deshmukh
  • Hemant J. Purohit


Peptide scaffolds are diverse chemical structures providing a major base for drug development. Nature modifies a premature peptide with respect to a basic scaffold structure to create a mature and active peptide. Mimicking the natural scaffolds with desirable modifications i.e., scaffold-hopping will decrease the enormous efforts of chemical syntheses and testing for drug development. We have surveyed the scaffold-based compounds being used for anticancer, antiinfective, antiinflammatory and antidiabetic activities. Synthetic peptidomimetics like aptamers, dendrimers, arylamide foldamers, β peptides, d peptides etc. provide an anticipative picture for the therapeutic use of scaffold structures. Free energy based conformational analysis of peptidomimetics provides details of their structure–activity relationships. Diverse forms of such peptidomimetics with respect to their structure and applications are discussed alongwith the mimetics which reached clinical trials. The review gives an insight into the future panoramas of drug development and identifies few peptide scaffolds having diverse potential with chemical modifications.


Scaffold Peptidomimetics Dendrimer Aptamer Peptoid Foldamer Scaffold hopping 



We acknowledge the financial support from CSIR for one of the author (Radhika Deshmukh) through CSIR-Junior Research Fellowship.


  1. Agrafiotis DK, Wiener JJM (2010) Scaffold explorer: an interactive tool for organizing and mining structure-activity data spanning multiple chemotypes. J Med Chem 53:5002–5011PubMedCrossRefGoogle Scholar
  2. Ahlstro MM, Ridderstro M, Luthman K, Zamora I (2005) Virtual screening and scaffold hopping based on GRID molecular interaction fields. J Chem Inf Model 45:1313–1323CrossRefGoogle Scholar
  3. Ali M, Hicks AER, Hellawell PG, Thoma G, Norman KE (2004) Polymers bearing sLex-mimetics are superior inhibitors of E-selectin-dependent leukocyte rolling in vivo. FASEB J 18:152–154PubMedGoogle Scholar
  4. Applet C, Wessolowski A, Dathe M, Schmieder P (2008) Structures of cyclic, antimicrobial peptides in a membrane-mimicking environment define requirements for activity. J Pept Sci 14:524–527CrossRefGoogle Scholar
  5. Artis DR, Lina JJ, Zhang C, Wang W, Mehra U, Perreault M, Erbe D, Krupka HI, England BP, Arnold J, Plotnikova AN, Marimuthua A, Nguyena H, Will S, Signaevskyc M (2009) Scaffold-based discovery of indeglitazar, a PPAR pan-active anti-diabetic agent. PNAS 106:262–267PubMedCrossRefGoogle Scholar
  6. Baines AT, Xu D, Der CJ (2011) Inhibition of Ras for cancer treatment: the search continues. Futur Med Chem 3:1787–1808CrossRefGoogle Scholar
  7. Bergmann R, Linusson A, Zamora I (2007) SHOP: scaffold hopping by GRID-based similarity searches. J Med Chem 50:2708–2717PubMedCrossRefGoogle Scholar
  8. Bertinetti BV, Pena NI, Cabrera GM (2009) An antifungal tetrapeptide from the culture of Penicillium canescens. Chem Biodivers 6:1178–1184PubMedCrossRefGoogle Scholar
  9. Biancalana M, Makabe K, Koide A, Koide S (2009) Molecular mechanism of thioflavin-T binding to the surface of beta-rich peptide self-assemblies. J Mol Biol 385:1052–1063PubMedCrossRefGoogle Scholar
  10. Boehm M, Wu T, Claussen H, Lemmen C (2008) Similarity searching and scaffold hopping in synthetically accessible combinatorial chemistry spaces. J Med Chem 51:2468–2480PubMedCrossRefGoogle Scholar
  11. Borghouts C, Kunz C, Groner B (2005) Current strategies for the development of peptide-based anti-cancer therapeutics. J Pept Sci 11:713–726PubMedCrossRefGoogle Scholar
  12. Bouget K, Aubin S, Delcros J, Arlot-Bonnemainsc Y, Baudy-Floc’ha M (2003) Hydrazino-Aza and N-Azapeptoids with therapeutic potential as anticancer agents. Bioorganic Med Chem 11:4881–4889CrossRefGoogle Scholar
  13. Brown N, Jacoby E (2006) On scaffolds and hopping in medicinal chemistry. Med Chem 6:1217–1229Google Scholar
  14. Brown NJ, Johansson J, Barron AE (2008a) Biomimicry of surfactant protein C. Acc Chem Res 41:1409–1417PubMedCrossRefGoogle Scholar
  15. Brown NJ, Wu CW, Servoss SLS, Barron AE (2008b) Effects of hydrophobic helix length and side chain chemistry on biomimicry in peptoid analogues of SP-C. Biochemistry 47:1808–1818PubMedCrossRefGoogle Scholar
  16. Brunner TB, Geiger M, Grabenbauer GG, Lang-Welzenbach M, Mantoni TS, Cavallaro A, Sauer R, Hohenberger W, McKenna WG (2008) Phase I trial of the human immunodeficiency virus protease inhibitor Nelfinavir and chemoradiation for locally advanced pancreatic cancer. J Clin Oncol 26:2699–2706PubMedCrossRefGoogle Scholar
  17. Butz K, Denk C, Fitscher B, Mertens IC, Ullmann A, Schroder CH, Seyler FH (2001) Peptide aptamers targeting the hepatitis B virus core protein: a new class of molecules with antiviral activity. Oncogene 20:6579–6586PubMedCrossRefGoogle Scholar
  18. Camb CA, Abedi M (2000) Methods and compositions for peptide libraries displayed on light-emitting scaffolds. United States Patent 6025485Google Scholar
  19. Cass CAP, Burg KLJ (2012) Tannic acid cross-linked collagen scaffolds and their anti-cancer potential in a tissue engineered breast implant. J Biomater Sci Polym Ed 23:281–298. doi:  10.1163/092050610X550331 PubMedCrossRefGoogle Scholar
  20. Cavallarin L, Andreu D, Segundo BS (1998) Cecropin A—derived peptides are potent inhibitors of fungal plant pathogens. MPMI 11:218–227PubMedCrossRefGoogle Scholar
  21. Choi S, Isaacs A, Clemen D, Liuc D, Kim H, Scott RW, Winkler JD, DeGrado WF (2009) De novo design and in vivo activity of conformationally restrained antimicrobial arylamide foldamers. PNAS 106:6968–6973PubMedCrossRefGoogle Scholar
  22. Chongsiriwatana NP, Patch JA, Czyzewski AM, Dohm MT, Ivankin A, Gidalevitz D, Zuckermann RN, Barron AE (2008) Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. PNAS 105:2794–2799PubMedCrossRefGoogle Scholar
  23. Clarke DJ, Campopiano DJ (2007) Maturation of McjA precursor peptide into active microcin MccJ25. Org Biomol Chem 5:2564–2566PubMedCrossRefGoogle Scholar
  24. Cole AM, Wise P, Diomand G (1997) Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J Biol Chem 272:12008–12013PubMedCrossRefGoogle Scholar
  25. Collas P (2008) The eleven year switch of peptide aptamers. J Biol 7:2. doi: 10.1186/jbiol64 CrossRefGoogle Scholar
  26. Crespo L, Sanclimens G, Pons M, Giralt E, Royo M, Albericio F (2005) Peptide and amide bond-containing dendrimers. Chem Rev 105:1663–1681PubMedCrossRefGoogle Scholar
  27. Dang XL, Wang YS, Huang YD, Yu XQ, Zhang WQ (2010) Purification and characterization of an antimicrobial peptide, insect defensin, from immunized house fly (Diptera: Muscidae). J Med Entomol 47:1141–1145PubMedCrossRefGoogle Scholar
  28. de Sa Alves FR, Barreiro EJ, Fraga CA (2009) From nature to drug discovery: the indole scaffold as a ‘privileged structure’. Mini Rev Med Chem 9:782–793PubMedCrossRefGoogle Scholar
  29. Delfraissya J, Flandreb P, Delaugerrec C, Ghosna J, Horband A, Girarde P, Nortonf M, Rouziouxc C, Taburetg A, Cohen-Codarf I, Vanf PN, Chauvin J (2008) Lopinavir/ritonavir monotherapy or plus zidovudine and lamivudine in antiretroviral-naïve HIV-infected patients. AIDS 22:385–393CrossRefGoogle Scholar
  30. Desideri N, Bolasco A, Fioravanti R, Monaco LP, Orallo F, Yane M, Ortuso F, Alcaro S (2011) Homoisoflavonoids: natural scaffolds with potent and selective monoamine oxidase-B inhibition properties. J Med Chem 54:2155–2164PubMedCrossRefGoogle Scholar
  31. Destoumieux D, Munoz M, Cosseaul C, Rodriguez J, Bulet P, Comps M, Bachère E (1997) Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 272:28398–28406PubMedCrossRefGoogle Scholar
  32. Filipe LCS, Machuqueiro M, Baptista AM (2011) Unfolding the conformational behavior of peptide dendrimers: insights from molecular dynamics simulations. J Am Chem Soc 133:5042–5052PubMedCrossRefGoogle Scholar
  33. Findlay B, Zhanel GG, Schweizer F (2010) Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Antimicrob Agents Chemother 54:4049–4058PubMedCrossRefGoogle Scholar
  34. Fjell CD, Jenssen H, Hilpert K, Cheung WA, Pante′ N, Hancock REW, Cherkasov A (2009) Identification of novel antibacterial peptides by chemoinformatics and machine learning. J Med Chem 52:2006–2015PubMedCrossRefGoogle Scholar
  35. Foillard S, Sancey L, Coll J, Boturyn D, Dumy P (2009) Targeted delivery of activatable fluorescent pro-apoptotic peptide into live cells. Org Biomol Chem 7:221–224PubMedCrossRefGoogle Scholar
  36. Gargouri SH, Jellouli-Chaker N, Gargouri A (2010) Factors affecting production and stability of the AcAFP antifungal peptide secreted by Aspergillus clavatus. Appl Microbiol Biotechnol 86:535–543PubMedCrossRefGoogle Scholar
  37. Garsky VM, Joyce JG, Keller PM, Liang X, Shiver JW (2011) Peptide conjugate compositions and methods for the prevention and treatment of Alzheimer’s disease. European Patent Application EP2269633Google Scholar
  38. Gelain F, Horii A, Zhang S (2007) Designer self-assembling peptide scaffolds for 3-D tissue cell cultures and regenerative medicine. Macromol Biosci 7:544–551PubMedCrossRefGoogle Scholar
  39. Ghosh S, Nie A, An J, Huang Z (2006) Structure-based virtual screening of chemical libraries for drug discovery. Curr Opin Chem Biol 10:194–202PubMedCrossRefGoogle Scholar
  40. Gilch S, Kehler C, Schätzl HM (2007) Peptide aptamers expressed in the secretory pathway interfere with cellular PrPSc formation. J Mol Biol 371:362–373PubMedCrossRefGoogle Scholar
  41. Giuliani A, Rinaldi AC (2011) Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches. Cell Mol Life Sci 68:2255–2266PubMedCrossRefGoogle Scholar
  42. Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. CEJB 2:1–33Google Scholar
  43. Godballe T, Nilsson LL, Petersen PD, Jenssen H (2011) Antimicrobial β-peptides and α-peptoids. Chem Biol Drug Des 77:107–116PubMedCrossRefGoogle Scholar
  44. Gong Y, Cheon H, Lee T, Kang N (2010) A novel 3-(8-Chloro-6-(trifluoromethyl)imidazo[1, 2-a]pyridine-2-yl)phenyl acetate skeleton and pharmacophore model as glucagon-like peptide 1 receptor agonists. Bull Korean Chem Soc 31:3760–3764. doi: 10.5012/bkcs.2010.31.12.3760 CrossRefGoogle Scholar
  45. Grabowski K, Baringhaus KH, Schneider G (2008) Scaffold diversity of natural products: inspiration for combinatorial library design. Nat Prod Rep 25:892–904PubMedCrossRefGoogle Scholar
  46. Gruzman A, Babai G, Sasson S (2009) Adenosine monophosphate-activated protein kinase (AMPK) as a new target for antidiabetic drugs: a review on metabolic, pharmacological and chemical considerations. Rev Diabet Stud 6:13–36PubMedCrossRefGoogle Scholar
  47. Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44:136–142CrossRefGoogle Scholar
  48. Gupta K, Kumar M, Balaram P (2010) Disulfide bond assignments by mass spectrometry of native natural peptides: cysteine pairing in disulfide bonded conotoxins. Anal Chem 82:8313–8319PubMedCrossRefGoogle Scholar
  49. Hajji M, Jellouli K, Hmidet N, Balti R, Sellami-Kamoun A, Nasri M (2010) A highly thermostable antimicrobial peptide from Aspergillus clavatus ES1: biochemical and molecular characterization. J Ind Microbiol Biotechnol 37:805–813. doi: 10.1007/s10295-010-0725-6 PubMedCrossRefGoogle Scholar
  50. Hamilton AD, Hamuro Y (1998) Synthetic antibody mimics—multiple peptide loops attached to a molecular scaffold. United States Patent 5770380Google Scholar
  51. Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323PubMedGoogle Scholar
  52. Haug BE, Stensen W, Kalaaji M, Rekdal O, Svendsen JS (2008) Synthetic antimicrobial peptidomimetics with therapeutic potential. J Med Chem 51:4306–4314PubMedCrossRefGoogle Scholar
  53. Huang H, She Z, Lin Y, Vrijmoed LL, Lin W (2007) Cyclic peptides from an endophytic fungus obtained from a mangrove leaf (Kandelia candel). J Nat Prod 70:1696–1699PubMedCrossRefGoogle Scholar
  54. Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511PubMedCrossRefGoogle Scholar
  55. Kaiserer L, Oberparleiter C, Weiler-Görz R, Burgstaller W, Leiter E, Marx F (2003) Characterization of the Penicillium chrysogenum antifungal protein PAF. Arch Microbiol 180:204–210PubMedCrossRefGoogle Scholar
  56. Kastenholz MA, Pastor M, Cruciani G, Haaksma EEJ, Fox T (2000) GRID/CPCA: a new computational tool to design selective ligands. J Med Chem 43:3033–3304PubMedCrossRefGoogle Scholar
  57. Kitts DD, Weiler K (2003) Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 9:1309–1323PubMedCrossRefGoogle Scholar
  58. Ko E, Liu J, Burgess K (2011) Minimalist and universal peptidomimetics. Chem Soc Rev 40:4411–4421. doi: 10.1039/c0cs00218f PubMedCrossRefGoogle Scholar
  59. Koponen O, Tolonen M, Qiao M, Wahlström G, Helin J, Saris PEJ (2002) NisB is required for the dehydration and NisC for the lanthionine formation in the post-translational modification of nisin. Microbiology 148:3561–3568PubMedGoogle Scholar
  60. Lai X, Feng Y, Pollard J, Chin JN, Rybak MJ, Bucki R, Epand RF, Epand RM, Savage PB (2008) Ceragenins: cholic acid-based mimics of antimicrobial peptides. Acc Chem Res 41:1233–1240PubMedCrossRefGoogle Scholar
  61. Lee CC, MacKay JA, Frechet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517–1526PubMedCrossRefGoogle Scholar
  62. Lempens EHM, Helms BA, Bayles AR, Merkx M, Meijer EW (2010) A versatile, modular platform for multivalent peptide ligands based on a dendritic wedge. Eur J Org Chem 2010:111–119CrossRefGoogle Scholar
  63. Leppala A (2000) Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides. Trends Food Sci Technol 11:347–356CrossRefGoogle Scholar
  64. Lindholm P, Göransson U, Johansson S (2002) Cyclotides: a novel type of cytotoxic agents. Mol Cancer Ther 1:365–369PubMedCrossRefGoogle Scholar
  65. Liou J, Deng W, Gilroy D, Shyue S, Wu KK (2001) Colocalization and interaction of cyclooxygenase-2 with caveolin-1 in human fibroblasts. J Biol Chem 276:34975–34982PubMedCrossRefGoogle Scholar
  66. Liu Z, Deshazer H, Rice AJ, Chen K, Zhou C, Kallenbach NR (2006) Multivalent antimicrobial peptides from a reactive polymer scaffold. J Med Chem 49:3436–3439PubMedCrossRefGoogle Scholar
  67. Liu SP, Zhou L, Lakshminarayanan R, Beuerman RW (2010) Multivalent antimicrobial peptides as therapeutics: design principles and structural diversities. Int J Pept Res Ther 16:199–213PubMedCrossRefGoogle Scholar
  68. Loffet A (2002) Peptides as drugs: is there a market? J Pept Sci 8:1–7PubMedCrossRefGoogle Scholar
  69. Lou K, Writer S (2010) A new spin on protegrin. SciBX 3(9):1–2. doi:  10.1038/scibx.2010.265 Google Scholar
  70. Mancini I, Defant A, Guella G (2007) Recent synthesis of marine natural products with antibacterial activities. Anti-Infect Agents Med Chem 6:17–48Google Scholar
  71. Marcos JF, Munoz A, PerezPaya E, Misra S, opez-Garcia B (2008) Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol 46:273–301PubMedCrossRefGoogle Scholar
  72. Mas-Moruno C, Rechenmacher F, Kessler H (2010) Cilengitide: the first anti-angiogenic small molecule drug candidate. Design, synthesis and clinical evaluation. Anti-Cancer Agents Med Chem 10:753–768CrossRefGoogle Scholar
  73. Maupetit J, Derreumaux P, Tufféry P (2009) PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Res 37:498–503. doi:  10.1093/nar/gkp323 CrossRefGoogle Scholar
  74. Meyer V (2008) A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value. Appl Microbiol Biotechnol 78:17–28. doi:  10.1007/s00253-007-1291-3 PubMedCrossRefGoogle Scholar
  75. Mitchell P (2002) A perspective on protein microarrays. Nat Biotechnol 20:225–229PubMedCrossRefGoogle Scholar
  76. Monk BC, Niimi K, Lin S, Knight A, Kardos TB, Cannon RD, Parshot R, King A, Lun D, Harding DRK (2005) Surface-active fungicidal D-peptide inhibitors of the plasma membrane proton pump that block azole resistance. Antimicrob Agents Chemother 49:57–70PubMedCrossRefGoogle Scholar
  77. Moradi S, Soltani S, Ansari AM, Sardari S (2009) Peptidomimetics and their applications in antifungal drug design. Anti-Infect Agents Med Chem 8:327–344Google Scholar
  78. Nakaya K, Omata K, Okahashi I, Nakamura Y, Kolkenbrock H, Ulbrich N (1990) Amino acid sequence and disulfide bridges of an antifungal protein isolated from Aspergillus giganteus. Eur J Biochem 193:31–38PubMedCrossRefGoogle Scholar
  79. Nemec KN, Khaled AR (2008) Therapeutic modulation of apoptosis: targeting the BCL-2 family at the interface of the mitochondrial membrane. Yonsei Med J 49:689–697PubMedCrossRefGoogle Scholar
  80. Nijnik A, Madera L, Ma S, Waldbrook M, Elliott MR, Easton DM, Mayer ML, Mullaly SC, Kindrachuk J, Jenssen H, Hancock REW (2010) Synthetic cationic peptide IDR-1002 provides protection against bacterial infections through chemokine induction and enhanced leukocyte recruitment. J Immunol 184:2539–2550PubMedCrossRefGoogle Scholar
  81. Nolan EM, Walsh CT (2009) How nature morphs peptide scaffolds into antibiotics. Chembiochem 10:34–53PubMedCrossRefGoogle Scholar
  82. Park CB, Kim MS, Kim SC (1996) A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem Biophys Res Commun 218:408–413PubMedCrossRefGoogle Scholar
  83. Pathak A, Singh SK, Biabani MA, Kulshreshtha DK, Puri SK, Srivastava S, Kundu B (2002) Synthesis of combinatorial libraries based on terpenoid scaffolds. Comb Chem High Throughput Screen 5:241–248PubMedGoogle Scholar
  84. Paul J, Powers S, Hancock REW (2003) The relationship between peptide structure and antibacterial activity. Peptides 24:1681–1691CrossRefGoogle Scholar
  85. Peng L, Liu R, Marik J, Wang X, Takada Y, Lam KS (2006) Combinatorial chemistry identifies high-affinity peptidomimetics against α4β1 integrin for in vivo tumor imaging. Nat Chem Biol 2:381–389PubMedCrossRefGoogle Scholar
  86. Peschel A (2002) How do bacteria resist human antimicrobial peptides? Trends Microbiol 10:179–186PubMedCrossRefGoogle Scholar
  87. Pettit RK (2011) Culturability and secondary metabolite diversity of extreme microbes: expanding contribution of deep sea and deep-sea vent microbes to natural product discovery. Mar Biotechnol 13:1–11PubMedCrossRefGoogle Scholar
  88. Pieters RJ, Arnuscha CJ, Breukinkb E (2009) Membrane permeabilization by multivalent anti-microbial peptides. Protein Pept Lett 16:1–7CrossRefGoogle Scholar
  89. Rebuffat S, Goulard C, Hlimi S, Bodo B (2000) Two unprecedented natural Aib-peptides with the (Xaa-Yaa-Aib-Pro) motif and an unusual C-terminus: structures, membrane-modifying and antibacterial properties of pseudokonins KL III and KL VI from the fungus Trichoderma pseudokoningii. J Pept Sci 6:519–533PubMedCrossRefGoogle Scholar
  90. Renaudet O (2008) Recent advances on cyclopeptide-based glycoclusters. Mini Rev Org Chem 5:274–286CrossRefGoogle Scholar
  91. Roch P, Yang Y, Toubiana M, Aumelas A (2008) NMR structure of mussel mytilin, and antiviral-antibacterial activities of derived synthetic peptides. Dev Comp Immunol 32:227–238PubMedCrossRefGoogle Scholar
  92. Rowinsky EK (2006) Lately, it occurs to me what a long, strange trip it’s been for the farnesyl transferase inhibitors. J Clin Oncol 24:2981–2984PubMedCrossRefGoogle Scholar
  93. Rubinchik E, Dugourd D, Algara T, Pasetka C, Friedland HD (2009) Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int J Antimicrob Agents 34:457–461PubMedCrossRefGoogle Scholar
  94. Ruttekolk IR, Chakrabarti A, Richter M, Duchardt F, Glauner H, Verdurmen PRW, Rademann J, Brock R (2011) Coupling to polymeric scaffolds stabilizes biofunctional peptides for intracellular applications. Mol Pharmacol Fast Forward 79:692–700. doi:  10.1124/mol.110.068296 Google Scholar
  95. Sadler K, Tam JP (2002) Peptide dendrimers: applications and synthesis. Rev Mol Biotechnol 90:195–229CrossRefGoogle Scholar
  96. Schneider G (2011) Computational medicinal chemistry. Futur Med Chem 3:393–394CrossRefGoogle Scholar
  97. Schneider P, Tanrikulu Y, Schneider G (2009) Self-organizing maps in drug discovery: compound library design, scaffold-hopping, repurposing. Curr Med Chem 16:258–266PubMedCrossRefGoogle Scholar
  98. Seebach D, Overhand M, Kühnle FNM, Martinoni B, Oberer L, Hommel U, Widmer H (1996) β-peptides: synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X-ray crystallography. Helical secondary structure of a-hexapeptide in solution and its stability towards pepsin. Helv Chim Acta 79:913–941CrossRefGoogle Scholar
  99. Serda M, Musiol R, Polanski J (2010) New thiosemicarbazones based on quinoline scaffold as anticancer iron chelators. In: 14th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-14) abstract: CO13Google Scholar
  100. Seyler FH, Mertens IC, Tomai E, Butz K (2004) Peptide aptamers: specific inhibitors of protein function. Curr Mol Med 4:529–538CrossRefGoogle Scholar
  101. Shi N, Pardridge WM (2000) Noninvasive gene targeting to the brain. PNAS 97:7567–7572PubMedCrossRefGoogle Scholar
  102. Silva SV, Malcata FX (2005) Caseins as source of bioactive peptides. Int Dairy J 15:1–15CrossRefGoogle Scholar
  103. Som A, Vemparala S, Ivanov I, Tewl GN (2008) Synthetic mimics of antimicrobial peptides. Biopolymers 90:83–94PubMedCrossRefGoogle Scholar
  104. Sonoda N, Imamura T, Yoshizaki T, Babendure JL, Lu J, Olefsky JM (2008) Beta-Arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic beta cells. PNAS 105:6614–6619PubMedCrossRefGoogle Scholar
  105. Sperandio O, Andrieu O, Miteva MA, Vo M, Souaille M, Delfaud F, Villoutreix BO (2007) MED-SuMoLig: a new ligand-based screening tool for efficient scaffold hopping. J Chem Inf Model 47:1097–1110PubMedCrossRefGoogle Scholar
  106. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502PubMedCrossRefGoogle Scholar
  107. Sun C (2005) Design and synthesis of combinatorial scaffolds—diazepinone and homopiperazine. Lett Drug Des Discov 2:48–50CrossRefGoogle Scholar
  108. Talarico TL, Dobrogosz WJ (1989) Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob Agents Chemother 33:674–679PubMedGoogle Scholar
  109. Tam JP, Lu YA, Yang JL, Chiu KW (1999) An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. PNAS 96:8913–8918PubMedCrossRefGoogle Scholar
  110. Teodoro M, Muegge I (2011) BIBuilder2011: exhaustive searching for de novo ligands. Mol Inf 30:63–75CrossRefGoogle Scholar
  111. Tew GN, Scott RW, Klein ML, Degrado WF (2010) De novo design of antimicrobial polymers, foldamers and small molecules: from discovery to practical applications. Acc Chem Res 43:30–39PubMedCrossRefGoogle Scholar
  112. Tomasic T, Masic LP (2009) Rhodanine as a privileged scaffold in drug discovery. Curr Med Chem 16:1596–1629PubMedCrossRefGoogle Scholar
  113. Travis S, Yap LM, Hawkey C, Warren B, Lazarov M, Fong T, Tesi RJ, Group RIS (2005) RDP58 is a novel and potentially effective oral therapy for ulcerative colitis. Inflamm Bowel Dis 11:713–719PubMedCrossRefGoogle Scholar
  114. Tsimberidou AM, Rudek MA, Hong D, Ng CS, Blair J, Goldsweig H, Kurzrock R (2010) Phase 1 first-in-human clinical study of S-trans, trans-farnesylthiosalicylic acid (salirasib) in patients with solid tumors. Cancer Chemother Pharmacol 65:235–241PubMedCrossRefGoogle Scholar
  115. Tsuda M, Langmann C, Harden N, Aigaki T (2005) The ring-finger scaffold protein plenty of SH3s targets TAK1 to control immunity signalling in Drosophila. EMBO Rep 6:1082–1087PubMedCrossRefGoogle Scholar
  116. Tsunoyama K, Amini A, Sternberg MJE, Muggleton SH (2008) Scaffold hopping in drug discovery using inductive logic programming. J Chem Inf Model 48:949–957PubMedCrossRefGoogle Scholar
  117. Tung Y, Coumar MS, Wu Y, Shiao H, Chang J, Liou J, Shukla P, Chang C, Kuo C, Yeh T, Lin C, Wu J, Wu S, Liao C, Hsieh H (2010) Scaffold-hopping strategy: synthesis and biological evaluation of 5, 6-fused bicyclic heteroaromatics to identify orally bioavailable anticancer agents. J Med Chem 54:3076–3080. doi: 10.1021/jm101027s CrossRefGoogle Scholar
  118. Valegard K, van Scheltinga ACT, Lloyd MD, Hara T, Ramaswamy S, Perrakis A, Thompson A, Lee HJ, Baldwin JE, Schofield CJ, Hajdu J, Andersson I (1998) Structure of a cephalosporin synthase. Nature 394:805–809PubMedCrossRefGoogle Scholar
  119. van der Does AM, Bogaards SJP, Ravensbergen B, Beekhuizen H, van Dissel JT, Nibbering PH (2010) Antimicrobial hLF1-11 directs granulocyte-macrophage colony-stimulating factor-driven monocyte differentiation toward macrophages with enhanced recognition and clearance of pathogens. Antimicrob Agents Chemother 54:811–816PubMedCrossRefGoogle Scholar
  120. van der Meer JR, Polman J, Beerthuyzen MM, Siezen RJ, Kuipers OP, De Vos WM (1993) Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J Bacteriol 175:2578–2588PubMedGoogle Scholar
  121. van Kasteren SI, Kramer HB, Jensen HH, Campbell SJ, Kirkpatrick J, Oldham NJ, Anthony DC, Davis BG (2007) Expanding the diversity of chemical protein modification allows post-translational mimicry. Nat Lett 446:1105–1109CrossRefGoogle Scholar
  122. Varkey J, Singh S, Nagaraj R (2006) Antibacterial activity of linear peptides spanning the carboxy-terminal β-sheet domain of arthropod defensins. Peptides 27:2614–2623PubMedCrossRefGoogle Scholar
  123. Volinsky R, Kolusheva S, Berman A, Jelinek R (2004) Microscopic visualization of alamethicin incorporation into model membrane monolayers. Langmuir 20:11084–11091PubMedCrossRefGoogle Scholar
  124. Walsh CT, Chen H, Keating TA, Hubbard BK, Losey HC, Luo L, Marshall CG, Miller DA, Patel HM (2001) Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. Curr Opin Chem Biol 5:525–534PubMedCrossRefGoogle Scholar
  125. Wang G (2007) Tool developments for structure-function studies of host defense peptides. Protein Pept Lett 14:57–69PubMedCrossRefGoogle Scholar
  126. Wang FW, Hou CR, Li WP, Shi DH (2008) Bioactive metabolites from Penicillium sp., an endophytic fungus residing in Hopea hainanensis. World J Microbiol Biotechnol 24:2143–2147CrossRefGoogle Scholar
  127. Welch BD, VanDemark AP, Heroux A, Hill CP, Kay MS (2007) Potent D-peptide inhibitors of HIV-1 entry. PNAS 104:16828–16833PubMedCrossRefGoogle Scholar
  128. Whelan AP, Dietrich LEP, Newman DK (2006) Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2:71–78CrossRefGoogle Scholar
  129. Xiao Y, Harris R, Bayram E, Santago P, Schmitt JD (2006) Supervised self-organizing maps in drug discovery, improvements in descriptor selection and model validation. J Chem Inf Model 46:137–144PubMedCrossRefGoogle Scholar
  130. Yan B, Xue M, Xiong B, Liu K, Hu D, Shen J (2009) ScafBank: a public comprehensive scaffold database to support molecular hopping. Acta Pharmacol Sinica 30:251–258CrossRefGoogle Scholar
  131. Yang Z, Zhao X (2011) A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell–scaffold interaction and chemotherapeutic resistance of anticancer drugs. Int J Nanomed 5:303–331CrossRefGoogle Scholar
  132. Yang LH, Miao L, Lee OO, Li X, Xiong H, Pang K, Vrijmoed L, Qian P (2007) Effect of culture conditions on antifouling compound production of a sponge-associated fungus. Appl Microbiol Biotechnol 74:1221–1231PubMedCrossRefGoogle Scholar
  133. Yeung ATY, Gellatly SL, Hancock REW (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68:2161–2176PubMedCrossRefGoogle Scholar
  134. Yount NY, Yeaman MR (2004) Multidimensional signatures in antimicrobial peptides. PNAS 101:7363–7368PubMedCrossRefGoogle Scholar
  135. Yu Z, Lang G, Kajahn I, Schmaljohann R, Imhoff JF (2008) Scopularides A and B, cyclodepsipeptides from a marine sponge-derived fungus, Scopulariopsis brevicaulis. J Nat Prod 71:1052–1054PubMedCrossRefGoogle Scholar
  136. Zhang L, An R, Wang J, Sun N, Zhang S, Hu J, Kuai J (2005a) Exploring novel bioactive compounds from marine microbes. Curr Opin Microbiol 8:276–281PubMedCrossRefGoogle Scholar
  137. Zhang S, Gelain F, Zhao X (2005b) Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin Cancer Biol 15:413–420PubMedCrossRefGoogle Scholar
  138. Zhao H (2006) Scaffold selection and scaffold hopping in lead generation: a medicinal chemistry perspective. Drug Discov Today 12:149–155PubMedCrossRefGoogle Scholar
  139. Zhong H, Carlson HA (2005) Computational studies and peptidomimetic design for the human p53–MDM2 complex. Proteins Struct Funct Bioinform 58:222–234CrossRefGoogle Scholar
  140. Zhou C, Min J, Liu Z, Young A, Deshazer H, Gao T, Chang Y, Kallenbach NR (2008) Synthesis and biological evaluation of novel 1, 3, 5-triazine derivatives as antimicrobial agents. Bioorg Med Chem Lett 18:1308–1311PubMedCrossRefGoogle Scholar
  141. Zhu S, Gao B (2009) A fossil antibacterial peptide gives clues to structural diversity of cathelicidin-derived host defense peptides. FASEB J 23:13–20PubMedCrossRefGoogle Scholar
  142. Zhu S, Aumelas A, Gao B (2011) Convergent evolution-guided design of antimicrobial peptides derived from influenza A virus hemagglutinin. J Med Chem 54:1091–1095PubMedCrossRefGoogle Scholar
  143. Zuckerman RN, Kerr JM, Kent SBH, Moos WH (1992) Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by sub-monomer solid-phase synthesis. J Am Chem Soc 114:10646–10647CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Environmental Genomics DivisionNational Environmental Engineering Research InstituteNagpurIndia

Personalised recommendations