Side Chain Anchoring of Tryptophan to Solid Supports Using a Dihydropyranyl Handle: Synthesis of Brevianamide F

  • Carolina Torres-García
  • Mireia Díaz
  • Daniel Blasi
  • Immaculada Farràs
  • Irene Fernández
  • Xavier Ariza
  • Jaume Farràs
  • Paul Lloyd-Williams
  • Miriam Royo
  • Ernesto NicolásEmail author


The multifunctional character of tryptophan has made it a target for the development of new molecules with therapeutic applications. In this sense the design of alternative solid phase routes would allow the widening of synthetic possibilities to access these molecules through conventional or combinatorial strategies. The present work describes a new strategy for side-chain anchoring of tryptophan to dihydropyranyl-functionalized polystyrene resins and its application to the synthesis of the natural diketopiperazine Brevianamide F. For this study a new handle (4-[(3,4-dihydro-2H-pyran-2-yl)methoxy]benzoic acid) was prepared in order to functionalize aminomethyl or methylbenzhydrylamine resins. A preliminary study in solution using Fmoc-Trp-OR (R = Allyl or Me) and suitable resin models showed that the formation of an hemiaminal linkage with the indole system could be brought about by either conventional or microwave heating in 1,2-dichloroethane and in the presence of pyridine p-toluenesulfonate in yields of 70–95% practically without the formation of sub-products. On the other hand the amino acid could be liberated from the resin at room temperature in yields of up to 90% using trifluoroacetic acid in dichloromethane in the presence of 1,3-dimethoxybenzene as a cation scavenger. The conditions found in solution for the reversible formation of the hemiaminal were only reproducible in solid-phase work using conventional heating. These conditions were used in the synthesis of Brevianamide F, furnishing the diketopiperazine in an overall yield of 56%. These results demonstrate the potential of this strategy for the preparation of new molecules based upon tryptophan as a synthetic precursor.


Dihydropyranyl handle DKPs Side chain anchoring Solid phase Tryptophan 



We are grateful for financial support from Ministerio de Ciencia e Innovación (CTQ2006-12460).


  1. Anderson MO, Shelat AA, Guy RK (2005) Solid-phase approach to the phallotoxins: total synthesis of [Ala7]-phalloidin. J Org Chem 70:4578–4584PubMedCrossRefGoogle Scholar
  2. Ashnagar A, Bailey PD, Cochrane PJ, Mills TJ, Price RA (2007) Unusual rearrangements and cyclizations involving polycyclic indolic systems. Arkivoc 11:161–171Google Scholar
  3. Basso A, Ernst B (2001) Solid-phase synthesis of hydroxyproline-based cyclic hexapeptides. Tetrahedron Lett 42:6687–6690CrossRefGoogle Scholar
  4. Bernhardt A, Drewello M, Schutkowski M (1997) The solid-phase synthesis of side-chain-phosphorylated peptide-4-nitroanilides. J Pept Res 50:143–152PubMedCrossRefGoogle Scholar
  5. Black KM, Clark-Lewis I, Wallace CJA (2001) Conserved tryptophan in cytochrome c: importance of the unique side-chain features of the indole moiety. Biochem J 359:715–720PubMedCrossRefGoogle Scholar
  6. Caballero E, Avendaño C, Menéndez JC (2003) Brief total synthesis of the cell cycle inhibitor tryprostatin B and related preparation of its alanine analogue. J Org Chem 68:6944–6951PubMedCrossRefGoogle Scholar
  7. Cabrele C, Langer M, Beck-Sickinger AG (1999) Amino acid side chain attachment approach and its application to the synthesis of tyrosine-containing cyclic peptides. J Org Chem 64:4353–4361CrossRefGoogle Scholar
  8. Chang J, Dong C, Guo X et al (2005) A solid-phase approach to novel purine and nucleoside analogs. Bioorg Med Chem 13:4760–4766PubMedCrossRefGoogle Scholar
  9. Gordon EM, Kerwin JF (1998) Combinatorial chemistry and molecular diversity in drug discovery. Wiley-Liss, New YorkGoogle Scholar
  10. Graham KAN, Wang Q, Eisenhut M, Haberkorn U, Mier W (2002) A general method for functionalising both the C- and N-terminals of Tyr3-octreotate. Tetrahedron Lett 43:5021–5024CrossRefGoogle Scholar
  11. Gu W, Silverman RB (2003) Solid-phase total synthesis of scytalidamide A. J Org Chem 68:8774–8779PubMedCrossRefGoogle Scholar
  12. Guibe F (1998) Allylic protecting groups and their use in a complex environment. Part II: allylic protecting groups and their removal through catalytic palladium pi-allyl methodology. Tetrahedron 54:2967–3042CrossRefGoogle Scholar
  13. Jhaumeer-Laulloo S, Khodabocus A, Jugoo A, Jheengut D, Sobha S (2003) Synthesis of diketopiperazines containing prolinyl unit—cyclo(l-prolinyl-l-leucine), cyclo(l-prolinyl-l-isoleucine) and cyclo(l-tryptophyl-l-proline). J Indian Chem Soc 80:765–768Google Scholar
  14. Kates SA, Sole NA, Johnson CR, Hudson D, Barany G, Albericio F (1993) A novel, convenient, three-dimensional orthogonal strategy for solid-phase synthesis of cyclic peptides. Tetrahedron Lett 34:1549–1552CrossRefGoogle Scholar
  15. Kitade M, Tanaka H, Oe S, Iwashima M, Iguchi K, Takahashi T (2006) Solid-phase synthesis and biological activity of a combinatorial cross-conjugated dienone library. Chem Eur J 12:1368–1376PubMedCrossRefGoogle Scholar
  16. Kuriyama W, Kitahara T (2001) Synthesis of apicidin. Heterocycles 55:1–4CrossRefGoogle Scholar
  17. Liu S, Gu W, Lo D et al (2005) N-Methylsansalvamide and peptide analogues. Potent new antitumor agents. J Med Chem 48:3630–3638PubMedCrossRefGoogle Scholar
  18. Ma JC, Dougherty DA (1997) The cation-π interaction. Chem Rev 97:1303–1324PubMedCrossRefGoogle Scholar
  19. Ma Y, Sonveaux E (1989) The 9-fluorenylmethyloxycarbonyl group as a 5′-OH protection in oligonucleotide synthesis. Biopolymers 28:965–973PubMedCrossRefGoogle Scholar
  20. Mant CT, Kovacs JM, Kim HM, Pollock DD, Hodges RS (2009) Intrinsic amino acid side-chain hydrophilicity/hydrophobicity coefficients determined by reversed-phase high-performance liquid chromatography of model peptides: comparison with other hydrophilicity/hydrophobicity scales. Biopolymers 92:573–595PubMedCrossRefGoogle Scholar
  21. Mehdi RBA, Shaaban KA, Rebai IK, Smaoui S, Bejar S, Mellouli L (2009) Five naturally bioactive molecules including two rhamnopyranoside derivatives isolated from the Streptomyces sp. strain TN58. Nat Prod Res B 23:1095–1107CrossRefGoogle Scholar
  22. Milne PJ, Kilian G (2010) The properties, formation, and biological activity of 2,5-diketopiperazines. In: Mander L, Liu HW (eds) Comprehensive natural products II: chemistry and biology, vol 5. Elsevier Science, Amsterdam, pp 657–698CrossRefGoogle Scholar
  23. Nam N-H, Sardari S, Parang K (2003) Reactions of solid-supported reagents and solid supports with alcohols and phenols through their hydroxyl functional group. J Comb Chem 5:479–546PubMedCrossRefGoogle Scholar
  24. Nugiel DA, Cornelius LAM, Corbett JW (1997) Facile preparation of 2,6-disubstituted purines using solid-phase chemistry. J Org Chem 62:201–203PubMedCrossRefGoogle Scholar
  25. Richard DJ, Schiavi B, Joullie MM (2004) Synthetic studies of roquefortine C: synthesis of isoroquefortine C and a heterocycle. Proc Natl Acad Sci USA 101:11971–11976PubMedCrossRefGoogle Scholar
  26. Rodrigues de Sa Alves F, Barreiro EJ, Fraga CAM (2009) From nature to drug discovery: the indole scaffold as a ‘Privileged Structure’. Mini Rev Med Chem 9:782–793CrossRefGoogle Scholar
  27. Ruiz-Sanchis P, Savina Svetlana A, Albericio F, Alvarez M (2011) Structure, bioactivity and synthesis of natural products with hexahydropyrrolo[2,3-b]indole. Chemistry 17:1388–1408PubMedCrossRefGoogle Scholar
  28. Samanta U, Pal D, Chakrabarti P (1999) Packing of aromatic rings against tryptophan residues in proteins. Acta Crystallogr D D55:1421–1427CrossRefGoogle Scholar
  29. Samanta U, Pal D, Chakrabarti P (2000) Environment of tryptophan side chains in proteins. Proteins Struct Funct Genet 38:288–300PubMedCrossRefGoogle Scholar
  30. Sawyer TK (1997) Peptidomimetic and nonpeptide drug discovery: impact structure-based drug design. In: Veerapandian P (ed) Structure based drug design: disease, targets, techniques and development. Marcel Dekker, New York, pp 559–634Google Scholar
  31. Smith AL, Stevenson GI, Swain CJ, Castro JL (1998) Traceless solid phase synthesis of 2,3-disubstituted indoles. Tetrahedron Lett 39:8317–8320CrossRefGoogle Scholar
  32. Spatola AF, Romanovskis P (2000) Head-to-tail cyclic peptides and cyclic peptide libraries. In: Greenberg A, Breneman CM, Liebman JF (eds) The amide linkage: selected structural aspects in chemistry, biochemistry and materials science. Wiley, New York, pp 519–564Google Scholar
  33. Stathopoulos P, Papas S, Tsikaris V (2006) C-terminal N-alkylated peptide amides resulting from the linker decomposition of the Rink amide resin. J Pept Sci 12:227–232PubMedCrossRefGoogle Scholar
  34. Steyn PS (1973) Structure of five dioxopiperazines from Aspergillus ustus. Tetrahedron 29:107–120CrossRefGoogle Scholar
  35. Tanaka H, Ishida T, Matoba N, Tsukamoto H, Yamada H, Takahashi T (2006) Efficient polymer-assisted strategy for the deprotection of protected oligosaccharides. Angew Chem Int Ed 45:6349–6352CrossRefGoogle Scholar
  36. Thompson LA, Ellman JA (1994) Straightforward and general method for coupling alcohols to solid supports. Tetrahedron Lett 35:9333–9336CrossRefGoogle Scholar
  37. Trzeciak A, Bannwarth W (1992) Synthesis of head-to-tail cyclized peptides on solid support by Fmoc [9-fluorenylmethoxycarbonyl] chemistry. Tetrahedron Lett 33:4557–4560CrossRefGoogle Scholar
  38. Villorbina G, Canals D, Carde L et al (2007) Solid-phase synthesis of a combinatorial library of dihydroceramide analogues and its activity in human alveolar epithelial cells. Bioorg Med Chem 15:50–62PubMedCrossRefGoogle Scholar
  39. Wallace OB (1997) Solid phase synthesis of ketones from esters. Tetrahedron Lett 38:4939–4942CrossRefGoogle Scholar
  40. Wang X, Choe Y, Craik CS, Ellman JA (2002) Design and synthesis of novel inhibitors of gelatinase B. Bioorg Med Chem Lett 12:2201–2204PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Carolina Torres-García
    • 1
  • Mireia Díaz
    • 2
  • Daniel Blasi
    • 3
  • Immaculada Farràs
    • 1
  • Irene Fernández
    • 4
  • Xavier Ariza
    • 1
    • 5
  • Jaume Farràs
    • 1
    • 5
  • Paul Lloyd-Williams
    • 1
  • Miriam Royo
    • 6
  • Ernesto Nicolás
    • 1
    Email author
  1. 1.Department of Organic ChemistryUniversity of BarcelonaBarcelonaSpain
  2. 2.Institut de Recerca Biomèdica (IRB Barcelona), Parc Cientìfic de BarcelonaBarcelonaSpain
  3. 3.Plataforma Tecnològica Drug Discovery, Parc Científic de BarcelonaBarcelonaSpain
  4. 4.Serveis Cientificotècnics de la Universitat de BarcelonaBarcelonaSpain
  5. 5.Institut de Biomedicina de la Universitat de Barcelona (IBUB)BarcelonaSpain
  6. 6.Unitat de Química Combinatòria, Parc Científic de BarcelonaBarcelonaSpain

Personalised recommendations